
Gemfony Professional Series

Dr. Rüdiger Berlich • Dr. Ariel García • Dr. Sven Gabriel

Parametric Optimization
with the

Geneva Library Collection

Version: 1.6 (Ivrea)

Parametric Optimization
The Geneva Library Collection

Authors:
Dr. Rüdiger Berlich
Dr. Sven Gabriel
Dr. Ariel García

Copyright
Gemfony scientific UG (haftungsbeschränkt)

See http://www.gemfony.eu for further
information on Gemfony scientific

This work is covered by the Creative Commons “Attribution-Noncommercial-No Derivative Works 3.0
Germany” license. If you use this work, you must make a full reference to Gemfony scientific (but
not in any way that suggests that it endorses you or your use of the work). You may not use this
work for commercial purposes. You may not alter, transform, or build upon this work. See http://
creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US for further
details.

Note that, in our view, the term “commercial purposes” also entails activities that indirectly
generate money from this work. As an example, putting this document on a revenue-generating
web page or distributing it as part of course material in revenue-generating events would
be considered a “commercial purpose” and would not be allowed without prior, written con-
sent by the management of Gemfony scientific. If in doubt, contact Gemfony via contact@
gemfony.eu, prior to making use of this document.

Please note that some pictures in this work, while used with permission, are owned by other
people or organizations. Please contact their respective owners if you intend to use these
pictures.

Updates to this document will be made available on http://www.gemfony.eu.

http://www.gemfony.eu
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
contact@gemfony.eu
contact@gemfony.eu
http://www.gemfony.eu

Disclaimer
This document, in its current form, is provided to you free of charge. While the authors try to make
sure that it is as accurate and up-to-date as possible, you will come across inaccuracies and likely
also errors in the document.

Please do make us aware of any problems you might find and we will aim to correct them as soon as
possible. Please also let us know if you feel that additional information on a particular topic might be
needed.

Please note that this document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

Neither Gemfony scientific UG (haftungsbeschränkt) nor the authors are responsible for consequences
arising out of the usage of this document, including unclear instructions or missing information not con-
tained in this document, its illustrations and sample programs.

It is the responsibility of the reader to ascertain that results obtained using the techniques described
in this document are suitable for the foreseen purpose. In particular, please note that optimization
algorithms may at times return solutions that are not fit for the intended purpose.

Use with care!

Contact
You can contact us via E-Mail (contact@gemfony.eu), via letter post or through our Web
page (http://www.gemfony.eu).

Address at the time of writing:
Gemfony scientific UG (haftungsbeschränkt)
Leopoldstr. 122
76344 Eggenstein-Leopoldshafen
Germany

Tel: +49 (0)7247 9342780
Fax: +49 (0)7247 9342781

Note that this contact information is subject to change without notice. Please see our web page
for up-to-date contact information and registration information for Gemfony scientific UG (haftungs-
beschränkt).

contact@gemfony.eu
http://www.gemfony.eu

Trademarks
Many of the designations used by manufacturers, sellers and other organizations to distinguish their
products and offers are claimed as trademarks. Where those designations appear in this manual and
we were aware of a trademark claim, we have listed them below.

Apache® and the Apache feather logo are trademarks of The Apache Software Foundation.

Debian® is a registered trademark of Software in the Public Interest, Inc.

Eclipse® is a trademark of the Eclipse Foundation, Inc., in the United States and other countries.

Gemfony scientific® and the Gemfony scientific logo are registered trademarks of Gemfony scientific
UG (haftungsbeschränkt)

IBM® is a registered trademark of International Business Machines Corporation in the United States
of America and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States of America and other
countries.

Oracle® and Java® are registered trademarks of Oracle and/or its affiliates.

Red Hat® and Fedora® are registered trademarks of Red Hat, Inc. in the United States of America
and other countries.

SUSE® and openSUSE are registered trademarks of Novell, Inc in the United States of America and
other countries.

Ubuntu® is a registered trademark of Canonical Ltd.

Other names may be trademarks of their respective owners.

We kindly ask you to make us aware of any trademark used in this manual that has not been listed
above. Likewise, if one of the trademarks hasn’t been referred to in the correct way, please do con-
tact us via contact@gemfony.eu, through our Web page http://www.gemfony.eu
or via letter post. See the previous pages for the correct address at the time of writing.

contact@gemfony.eu
http://www.gemfony.eu

[This is No Scientific Document]

[Your Mileage Will Vary]

[Thank you for your Patience]

Contents

1. Introduction 1
1.1. Roadmap . 2
1.2. Functionality . 2
1.3. Scalability . 2
1.4. Architecture . 2
1.5. Platform . 3
1.6. Licensing . 3
1.7. Contact . 3

I. Optimization Algorithms and Theory 5

2. General Considerations and Overview 7
2.1. Models and Reality . 8
2.2. Choosing evaluation criteria . 9
2.3. A Single Evaluation Criterion . 10
2.4. Relying on quality surfaces . 12
2.5. Multi-Criterion Optimization . 13
2.6. Parameter Constraints . 15
2.7. Definition . 16

3. Gradient Descents 17
3.1. Mathematical Background . 17
3.2. Application to Real-Life Problems . 18
3.3. Inquest . 20

4. Evolutionary Algorithms 21
4.1. Common Features . 21
4.2. Evolution Strategies . 27
4.3. Genetic Algorithms . 30
4.4. Hybrid Feature Vectors . 31
4.5. Multipopulations . 32
4.6. Inquest . 32

XV

Contents The Geneva Library Collection

5. Simulated Annealing 33
5.1. Nature as a Role Model . 33
5.2. The Algorithm in Pseudo-Code . 34
5.3. Means of Integration with Evolutionary Algorithms . 35
5.4. Inquest . 37

6. Swarm Intelligence 39
6.1. Particle Swarm Optimization . 39
6.2. Ant Colony Optimization . 43
6.3. Inquest . 43

7. Parameter Scans 45

8. Parallelization: General Considerations 47
8.1. Application Types . 47
8.2. Data- and Task-based Parallelism . 48
8.3. Parallelizing Optimization Algorithms . 48
8.4. Characteristics of Parallel and Distributed Environments . 49
8.5. Constraints . 58

9. More Complex Demos and Use Cases 65
9.1. Mapping Semi-Transparent Triangles to a Target Picture . 65
9.2. Protein Folding . 70
9.3. Training Feed Forward Neural Networks . 71

II. Using the Geneva Optimization Library 75

10. Compilation and Installation 77
10.1. Prerequisites . 77
10.2. Installation using binary packages . 80
10.3. Installation from source . 81

11. Defining a first Optimization Problem 87
11.1. Outline . 88
11.2. Defining a paraboloid . 90
11.3. Class Declaration . 91
11.4. Member functions . 92
11.5. The main() function . 97
11.6. A note about performance . 99
11.7. What we didn’t say . 99

12. Class Hierarchies and Principles 101
12.1. Core Optimization Classes . 101

XVI

The Geneva Library Collection Contents

12.2. Communication and Brokerage . 107
12.3. Random Number Creation . 107

13. Parameter Types 109
13.1. Overview . 109
13.2. Value Access . 111
13.3. Access to Value- and Initialization-Boundaries . 113
13.4. De-activation of Parameters . 114
13.5. Summary of Parameter Types . 114

14. Adaptors 133
14.1. General adaptor options . 133
14.2. GDoubleGaussAdaptor . 135
14.3. GDoubleBiGaussAdaptor . 136
14.4. GInt32GaussAdaptor . 138
14.5. GInt32FlipAdaptor . 140
14.6. GBooleanAdaptor . 141
14.7. Adaptors and Constrained Parameter Types . 142

15. Individuals and Parameters 145
15.1. General Principles . 145
15.2. fitnessCalculation(): Evaluating Individuals . 147
15.3. Serialization . 151
15.4. Further Interface Functions . 153
15.5. Personalities . 154

16. Advanced Constraint Handling 155
16.1. Visualization . 155
16.2. Problem Definition . 156
16.3. Identifying invalid candidate solutions with Geneva . 158
16.4. Transparent solution handling . 161
16.5. Constrained optimization with the USESIGMOID policy . 163
16.6. Other ways of identifying invalid solutions . 165
16.7. Accessing “true” and “transformed” fitness values . 165

17. Common Traits of Optimization Algorithms 167
17.1. Class Layout . 167
17.2. The Optimization Loop . 169
17.3. Geneva’s Halt Criteria . 170
17.4. The Population Interface . 171
17.5. Checkpointing . 172

18. Evolutionary Algorithms with Geneva 173
18.1. Looking Back at the Theory . 173

XVII

Contents The Geneva Library Collection

18.2. Construction of Evolutionary Algorithm Objects . 174
18.3. Specifying the Amount of Parents and Children . 176
18.4. Duplication Schemes . 178
18.5. Mutation . 179
18.6. Evaluation and Selection . 179
18.7. Mixing Parameter Types . 181

19. Simulated Annealing with Geneva 183

20. Particle Swarm Optimization with Geneva 185
20.1. Looking Back at the Theory . 185
20.2. Construction of PSO Objects . 186
20.3. Neighborhood-Sizes and Numbers of Neighborhoods . 187
20.4. Setting Progress Factors . 188
20.5. Constraints for Position Updates . 188
20.6. The Update Rule . 189

21. Gradient Methods with Geneva 191
21.1. Geneva’s Steepest Descent Implementation . 191
21.2. Construction of Gradient Descent Objects . 192
21.3. Important Configuration Options . 194

22. Parameter Scans with Geneva 195
22.1. Construction of Parameter Scan Objects . 195
22.2. Random scan versus scan on a grid . 197
22.3. Specifying which parameters to scan . 197

23. Parallelization Modes 199
23.1. Serial Execution . 199
23.2. Multithreaded Execution . 200
23.3. Brokered Execution . 200
23.4. Direct Instantiation of Algorithms . 201

24. Unified Access to Optimization Algorithms 205
24.1. The main() function . 205
24.2. Adding further Algorithms . 209

25. Optimization Monitors 211
25.1. Internal Architecture . 211
25.2. Specifics for the Algorithms . 213
25.3. Pluggable Optimization Monitors . 213

26. A More Complex Example 215
26.1. Setting Up the Individual . 215
26.2. Creating a Factory . 218

XVIII

The Geneva Library Collection Contents

26.3. Adding a Custom Optimization Monitor . 221
26.4. Setting up main() . 226

27. Caveats and Restrictions 229
27.1. Floating Point Accuracy . 229
27.2. Gradient Descent and Varying Parameter Value Ranges . 229
27.3. “Silent changes” to parameter values . 230
27.4. Individuals with a Variable Architecture . 230
27.5. The Effect of the Mutation Probability . 230
27.6. Value Range of Constrained Paramters . 231
27.7. Broker-flooding . 232
27.8. Assigning the worst possible evaluation . 232
27.9. Secure communication . 232

III. Details and Advanced Topics 235

28. Performing Meta-Optimization with Geneva 237
28.1. Multi-Populations . 237
28.2. Optimizing Configuration Parameters . 238
28.3. Letting different Algorithms Compete . 239

29. Coding Conventions 243
29.1. Code Documentation . 243
29.2. Coding Rules . 245
29.3. File naming schemes . 254

30. Helping Each other 257
30.1. Finding Help . 257
30.2. Suggesting Improvements . 258
30.3. Monetary donations . 259
30.4. Licensing . 259

IV. Independent Geneva Libraries 261

31. Creating Random Numbers with Hap 263
31.1. The Random Number Factory . 263
31.2. The Random Number Proxy GRandom . 264

32. Brokering with the Courtier Library 273
32.1. Architecture . 274
32.2. Requirements for Work Items . 276

XIX

Contents The Geneva Library Collection

32.3. Accessing the Broker . 276
32.4. Configuration Options of the Broker . 277
32.5. Submission of Work Items . 277

33. Common Functionality and Classes 281
33.1. A Thread-Safe Queue . 281
33.2. Raising Exceptions and Logging . 283
33.3. Parsing Configuration Files . 286
33.4. Creating Factories . 290
33.5. Singletons . 291
33.6. Global Options . 292
33.7. A Thread Group . 292
33.8. A Thread Pool . 292
33.9. The Plot Designer . 293
33.10. Parsing Formulas . 295

V. Appendix and Bibliography 299

A. Frequently Used Test Functions 301
A.1. Parabola . 301
A.2. Berlich Noisy Parabola . 301
A.3. Rosenbrock Function . 302
A.4. Ackley Function . 302
A.5. Rastrigin Function . 302
A.6. Schwefel Function . 302
A.7. Salomon Function . 303

B. The Boost Library Collection 309
B.1. Smart Pointers . 309
B.2. Serialization . 309
B.3. Threads . 310

C. The ROOT Analysis Framework 311

D. Important Open Source Licenses 315
D.1. The GNU Affero General Public License . 315
D.2. The Boost Software License, v 1.0 . 326

E. Glossary 329

F. References 331

Index 346

XX

Chapter 1.

Introduction

This manual provides a thorough introduction into performing parametric optimization with the Geneva
library collection. Geneva implements a collection of different optimization algorithms aimed at execu-
tion in distributed and parallel environments.

The software provides users with the means to tackle particularly large and complex optimization
problems on devices ranging from multicore machines over compute clusters to Grids and Clouds. In
addition, the broker-based architecture allows to define custom compute backends, such as a GPGPU
provider1. The algorithms being used make but very few assumptions about the underlying optimiza-
tion task, thus making them applicable to a very wide range of technical, scientific, and economic
problem domains.

Geneva could be used for the improvement of a simulation of social behaviour just as easily as for the
optimization of a combustion chamber, in order to engineer a more environmentally friendly car. The
optional, fine-grained control over Geneva’s inner workings – combined with sensible default values
– as well as the type-agnostic implementation make it easy for users to define the parameter space
underlying their optimization problem, and to model the associated evaluation function.

Geneva relieves users from the more daunting tasks usually associated with finding optimized solu-
tions. In this sense, Geneva is a tool; and indeed it has been built as a toolkit rather than a stand-alone
application.

The tell-tale acronym “Geneva” stands for “Grid-enabled evolutionary algorithms” and also hints at
the origin of this software in particle physics – the initial author of the code has worked for several
international particle physics experiments at the European Organization for Nuclear Research CERN
(Geneva, Switzerland) as well as the Stanford Linear Accelerator Center SLAC (Stanford, USA). All
authors have been involved over several years in running, maintaining, and delivering services for one
of the largest academic Grid installations world wide.

Geneva was developed with kind support from Karlsruhe Institute of Technology [101], Steinbuch
Centre for Computing [103], as well as the Helmholtz Association of German Research Centres [115].

1. . . which has beed successfully implemented outside of the core Geneva codebase

1

Chapter 1. Introduction The Geneva Library Collection

1.1. Roadmap

The mentioning of evolutionary algorithms in the software’s name only represents part of the truth
nowadays, as Geneva now also implements several other optimization algorithms. At the time of
writing, Geneva also covers particle swarm optimization, an implementation of gradient descents and
a form of simulated annealing. There is also an implementation of parameter scans, covering all
currently allowed parameter types.

All algorithms are based on the same data structures also used with evolutionary algorithms. Other
optimization algorithms will follow and are indeed straight forwarwad to implement.

1.2. Functionality

The optional, fine-grained control over Geneva’s inner workings – combined with sensible default val-
ues – as well as the type-agnostic implementation (floating point-, integer- and boolean-parameters
are currently supported) make it easy for users to define the parameter space underlying their opti-
mization problem, and to model the associated evaluation function.

In the Geneva code base, several libraries of more general applicability have been identified and
separated from the optimization-centric code. This allows to use the Geneva library collection for more
than “just” optimization. Among the features likely useful for other purposes is a broker infrastructure
which handles communication between the server and consumers such as networked worker-nodes–
and a random number factory – which fills random number buffers in several threads even when other
parts of the application are idle. There is also a library that allows to easily create plots, which in the
context of parametric optimization can be very useful to illustrate the progress over time.

Due to the variety of different algorithms, many essential parts of optimization algorithms have been
implemented in base classes. Hence Geneva’s components can also be used to implement new
algorithms and to experiment with modifications of existing algorithms.

1.3. Scalability

From a user’s perspective, distributed and multithreaded execution can be achieved just as easily as
serial execution on a single CPU-core. The library has been tested with a hundred distributed nodes,
each contributing its share to solving a large optimization problem in parallel. Performance, portability
and extensibility are at the heart of the C++-based, purely object-oriented design.

1.4. Architecture

Geneva’s architecture is based on the assumption that optimization problems are so complex that the
evaluation of parameter sets will consume most of the processing time of the code, and that evaluation

2

The Geneva Library Collection 1.5. Platform

cycles will take minutes, hours or days, rather than just a fraction of a second. The efficiency of the
application will thus usually be dominated by the implementation of the user-supplied and problem-
specific evaluation function. Therefore, Geneva’s core libraries can afford to put particular emphasis
on stability.

1.5. Platform

The Geneva library collection has so far predominantly been developed on Linux, as this is the platform
used by most Grid, Cloud, and Cluster installations.

At the time of writing, several different brands of Linux are supported, as well as versions of FreeBSD.
An experimental port to MacOS exists, with a Microsoft Windows port envisaged for the future. Porting
Geneva to other platforms than Linux will happen as the need arises.

The code base has minimal external dependencies. The only external components required come
from the Boost library collection, which itself is designed to be highly portable, just like the CMake
build environment.

Geneva compiles with different versions of the GNU Compiler Collection, as well as CLang. A test
suite checks for errors during nightly builds.

1.6. Licensing

The code of the library collection, at the time of writing in version 1.6 (Ivrea), is available under a well
known and established Open Source license – the Affero GPL v3 (see section D.1 for the full license).

1.7. Contact

Please contact us at contact@gemfony.eu if you would like to know more about the impli-
cations of using an Open Source product. Likewise, please do contact us if you are interested in
customized and commercial licensing options or would like us to support you in assessing the viability
of using Geneva for your optimization problems.

If there are more general questions you wish to ask we suggest that you post on one of the community
fora available through the Gemfony web page (http://www.gemfony.eu). If you would like
to help improve Geneva we kindly request that you submit feature requests and bugs through the
Launchpad portal (see http://www.launchpad.net/geneva).

With this said, we hope that Geneva will increase your productivity and help you to solve the most
daunting optimization problems. Please share your use-cases. We will consider the most interesting
success stories on the Gemfony web page.

Enjoy! The Gemfony team.

3

contact@gemfony.eu
http://www.gemfony.eu
http://www.launchpad.net/geneva

Part I.

Optimization Algorithms and Theory

5

Chapter 2.

General Considerations and Overview

This chapter wants to define the term optimization, as used in this document, and to highlight some
general considerations common to all types of optimization problems.

Key points: (1) All optimization problems need some sort of a metric, which can be used to evaluate and compare
candidate solutions. (2) Computer-based automated parametric optimization can be defined as the search for
the best available solution to a given problem under a number of practical constraints. (3) Noisy input data can
be likened to fuzzy knowledge or deficiencies in a person’s experience. (4) Finding the right balance between
accuracy and efficiency can be difficult for models of reality. (5) Trying to find a good solution by evaluating several
different values for each parameter will only work for very simple problem domains, as a very high multiplicity of
candidate solutions will be created. (6) Optimization problems may feature different, possibly conflicting figures of
merit. In this situation an optimization algorithm needs to find a suitable compromise or leave the ultimate choice
to the user. (7) Optimization algorithms will always have to rely on the geometry of the quality surface, but might
additionally use collaborative methods.

Literally translated, the Latin term optimum means the best. Following this translation, optimization
would refer to the search for the best solution to a problem. Optimization is also part of daily life.
Everyone strives to find optimal solutions to the problems faced in the course of carrying out ones
duties, increasing the perceived benefit to oneself and any related entity.

The word perceived in the above sentence was used on purpose. Every individual will have a –
possibly substantially – different understanding of what is, and what isn’t, a suitable solution to a given
problem. Reasons for this might include differences in each person’s experience, or information that
is available only to one person but not to the other. Personal taste and education will also play a
significant role. Furthermore, where individual experience is involved, information might be used that
is not consciously known or might not be explicable in easy terms to another person.

Finding good solutions will also often be an incremental procedure, where one starts from an accept-
able starting point and, by changing individual aspects of a problem’s solution, moves on to a better
solution. Finding a better solution also implies some sort of a metric, as different candidate solutions
need to be assessed and compared with each other. Ultimately, results obtained will differ from one
person to the other, and different people will have varying success in their undertakings.

Some optimization tasks can be automated. However, from the discussion so far it should already have
become clear that any sort of computer-based, automated optimization faces a number of difficulties.

7

Chapter 2. General Considerations and Overview The Geneva Library Collection

Figure 2.1.: Optimizations often act on a model, whose resemblance to reality may vary.

Most importantly, it codifies real-life problems and is thus subject to the same problems discussed
above.

2.1. Models and Reality

It is also important to understand that an optimization procedure can never return better results than
what is contained in the model of reality underlying the computation.

Figure 2.1 illustrates this fact. “Reality” is (thankfully) not by itself accessible to computer-based opti-
mization. Rather, a digital model of reality is built inside of a computer. For example, in case of climate
simulations one divides the atmosphere into volume elements. Calculations of the investigated param-
eters are then done individually for each volume element, but will take into account the interaction with
its neighbors. Any optimization done on the basis of this simulation will have to live with its restrictions.
And where the model in a subsection is wrong, the results of the optimization might differ substantially
from what is “real”. E.g. it might assume that the vegetation consists of more trees than there are in
reality, because someone cut them down in the meantime. This will have a significant impact on how
close the simulation in an area comes to reality.

Creating very complex models might also yield bad results. One reason is that a complex model

8

The Geneva Library Collection 2.2. Choosing evaluation criteria

Figure 2.2.: The EVA library (a predecessor of Geneva) was used in this example to optimize the
selection of “events” coming from a particle physics experiment. A significant reduction of
mis-reconstructed particles is visible (source: own pictures).

is more likely to contain systematic errors that will likely go undetected. Secondly, complex models
involve complex computations. And the limiting factor for many technical projects is the availability of
resources, not a lack of knowledge Hence, only a smaller part of the parameter space will be explored,
compared to a simpler model, as the computation would otherwise last too long. In the example shown
in figure 2.1, the accuracy of the weather simulation will crucially depend on the granularity of the
subsections, into which the (virtual) world has been divided. The smaller these sections, the better
the simulation. On the other hand, the number of sections increases quadratically with the decrease
of the sections’ edge length. And the duration of the computation will be directly related to the number
of sections. As there will be a limit to the amount of resources that can be assigned to the project,
there will also be a lower limit to the size of the subsections, and hence to how close the simulation
comes to reality. Finding the right balance between accuracy and efficiency can be difficult.

2.2. Choosing evaluation criteria

The success of automated parametric optimization crucially depends on the quality of the chosen
evaluation criteria. Their formulation implies the codification of possibly implicit knowledge and will,
for more complicated problems, likely be an iterative procedure1. Likewise, the success of computer-
based optimization strongly depends on the experience of the engineer or expert in the chosen field
of work. The result of the codification of a single evaluation criterion will be a mapping

1Automated parametric optimization can also help to make implicit knowledge explicit.

9

Chapter 2. General Considerations and Overview The Geneva Library Collection

X⃗ :=

x1

x2
...

xn

−→ f (x1,...,xn)=:Q (2.1)

in the form of a computer-implemented procedure, which transforms a given set of input parameters
into a single output value or quality Q2. X⃗ is called a feature vector. The fact that the mapping
is computer-implemented means that it is expressed in terms of a programming language. It may
thus imply any form of computer-based techniques, such as data-base look-ups, loops and logical
branches (i.e. if-statements).

Thus, while f (x1,...,xn) can be likened to a mathematical function, it will often have additional, more
unusual features. For example, it will very likely show discontinuities, and it will certainly not be
differentiable3.

2.3. A Single Evaluation Criterion

In the most simple case, parametric optimization means finding maxima or minima of a single
evaluation criterion. Due to the special characteristics of computer-implemented evaluation criteria,
though, standard mathematical procedures for finding the extreme values of Q can rarely be applied.
And, as will be discussed in section 2.5, it is also possible to perform optimization in the presence
of several, possibly conflicting evaluation criteria. We will first describe two examples for a single
evaluation criterion in the next few paragraphs, though.

As a practical example, one might want to optimize the combustion in a car engine. The figure of
merit that needs to be maximized might then be the torque for a given amount of fuel entering the
combustion chamber. Parameters will certainly include the geometry of the combustion chamber,
the amount, position and angle of fuel injectors, the pressure of the fuel entering the chamber and
the timing of the ignition. Determining the torque for a given set of parameters will likely involve a
computer-based simulation, as it will be virtually impossible to physically build a new engine for every
set of parameters.

Hence the evaluation function is a computer-implemented procedure which maps the input parameters
to the torque. Performing just a single evaluation of a given candidate solution could then take a
significant amount of time – possibly minutes or even hours – as the chemical and physical processes
inside of a combustion chamber are complex. It should also be very clear that standard mathematical
algorithms for finding extreme values cannot be easily applied.

Another example stems from particle physics. Here, possibly unknown elementary particles are re-
constructed from the tracks of other particles, as measured in particle physics experiments such as
ATLAS or ALICE at LHC/CERN. The result will be a “peak” in a histogram.

2Depending on your problem, a high quality can also mean a low value of Q
3. . . although it might be possible to calculate approximate gradients – see chapter 3 on gradient descents.

10

The Geneva Library Collection 2.3. A Single Evaluation Criterion

The success of a scientific analysis will often depend on the quality of this peak. This quality in turn
depends on a number of parameters (“cuts”) of the (computer-implemented) analysis procedure, such
as allowed momentum ranges and angles of particles emanating from a decay, or their so called
invariant masses.

Running an analysis (as a means of determining the quality of the peak) can again take significant
amounts of time, possibly hours. Finding suitable input parameters for the analysis can have a signifi-
cant effect on scientific findings. Figure 2.2 shows a real-life example, achieved with a predecessor of
the Geneva library[7].

Optimization problems with just one evaluation criterion are intuitive in the sense that their feature
vectors X⃗ i can be ordered (i.e. have a metric). In other words, it is possible to make a statement
whether for two feature vectors X⃗1 and X⃗2

Q
�

X⃗1

�
<=Q

�
X⃗2

�
or Q

�
X⃗1

�
>Q

�
X⃗2

�
(2.2)

is true. So the quality of both feature vectors can be directly compared. In two dimensions, it is
even possible to visualize the quality surface, and analogons to the two-dimensional case help to also
understand optimization problems with a higher number of parameters.

2.3.1. Why Is Brute Force Not Useful ?

If we assume for a moment that a single evaluation criterion f (x1 ...xn) has been defined that de-
pends on n floating parameters x i , then one might reason that a good algorithm would be to try out a
small number m of values for each parameter.

Let’s assume that just m =5 values should be tested per parameter (or dimension), and that n =10.
In order to find the best solution in this set, we would have to perform m n =510=9765625 evaluations.
Under the assumption that each evaluation takes a very short 1 millisecond4, we would need just a
little over two and a half hours to find the best candidate solution in the set on a single CPU core.

Particularly as the evaluation of different candidate solutions will usually be independent from each
other, one could reason that this procedure can easily be parallelized. Indeed this is the case so that,
ignoring the consequences of Amdahl’s law5, we might ideally be able to reduce this to less than 10
seconds on a massively parallel machine with 1024 CPU cores (or on a GPU).

Of course the globally best solution might be located somewhere in-between two tested parameter
sets, which we would never find out about with the above procedure. So we might decide to look at
100 values per parameter instead (which would still not give us a guaranty for success). We would
then have to perform 10010≈1020 evaluations, taking a little over 3 million years on 1024 CPU cores.
This would cost you 100 billion and produce over 100000 tons of CO2

6.

It should thus be obvious that this procedure will only work for very simple problem domains, parti-

4. . . which will certainly not be sufficient for the combustion-chamber and particle physics examples in section 2.2
5See the discussion in section 8.5.2 for further information.
6We assume that each 8 cores are part of a single machine, which consumes 300 Watts, that each 1000 Watts cost you

a very cheap 0.10 per hour, and that each 1000 Watts will result in the emission 1 kg of CO2

11

Chapter 2. General Considerations and Overview The Geneva Library Collection

cularly as many optimization problems feature a far higher amount of parameters than 10, and the
evaluation of a single parameter set may be running for hours or even days at a time for complex
optimization problems.

Likewise, finding good solutions “by hand” will generally be impossible for complex optimization prob-
lems, as we are usually dealing with very high-dimensional parameter spaces with many, possibly
unknown, correlations between different parameters. Thus the effects of varying individual parame-
ters will not be obvious even to the most experienced engineer.

2.4. Relying on quality surfaces

So, if brute force doesn’t work, what information can an optimization algorithm rely on in order to find
an acceptable solution to an optimization problem ?

It helps to remember that, in the case of optimization problems with a single evaluation criterion, we are
dealing with a “simple” (from the mathematical point of view) transformation. If a problem description
in pure mathematical terms was available, it would even be possible to search for the roots of the first
derivative in order to identify the extreme values.

Since, in automated parametric optimization procedures, evaluation functions are usually expressed
in some programming language, though, this option is not available. We can however calculate the
value of the evaluation function at any point in the allowed parameter space we want. Hence, for
continuous value ranges, we can still calculate the difference quotient (as opposed to the differential
quotient), with a finite step width. This is essentially the basis of gradient descents, as discussed
in detail in chapter 3. The simple idea here is that the next minimum (in case of minimization) lies
down-hill. More specifically, the algorithm tries to walk in finite steps into the approximate direction of
steepest descent.

Likewise, instead of trying to map large portions of the parameter space, most optimization algorithms
(need to) rely on the shape of the quality surface. Note again, though, that this will work best in
the presence of continuous surfaces and that the situation is more complicated if there are discrete
parameters, such as booleans (compare section 4.3 on Genetic Algorithms).

Some algorithms, such as the Particle Swarm Optimization (“PSO”) family (compare chapter 6), rely
on collaborative information. Candidate solutions effectively follow a trail. They are “drawn” towards
known good solutions, but also follow a path on their own, by adding a random element to their steps.

2.4.1. Local and Global Optima

If optimization (at least in the context of continuous parameter value ranges and with a single evalua-
tion criterion) means finding the extreme values of the quality surface, then algorithms need to be able
to cope with local optima in order to find the global best. Figure 2.3 illustrates the problem.

An algorithm that solely relies on the local geometry of the quality surface has no way of knowing,
whether it is currently in a local optimum or not. There are even problem domains (such as functions

12

The Geneva Library Collection 2.5. Multi-Criterion Optimization

Figure 2.3.: Local optima can prevent an optimization algorithm from finding the global optimum

with singularities), where, from a theoretical perspective, there is “no way out” of a local optimum7.

In such situations, and in the presence of discrete parameters, collaborative methods can help. They
determine new candidate solutions on the basis of not one known solution (and its surrounding area),
but two or more of them. Nevertheless this is no guaranty for success.

2.5. Multi-Criterion Optimization

The situation becomes even more complicated when more than one evaluation criterion is present.
After all, a feature vector X⃗ that minimizes one evaluation criterion does not necessarily minimize
another criterion – think back at the example with the car engine. Equation 2.1 then becomes

X⃗ :=

x1

x2
...

xn

−→

f 1 (x1,...,xn)
f 2 (x1,...,xn)

...
f m (x1,...,xn)

=:

Q1

Q2
...

Qm

=:Q⃗ (2.3)

Obviously, it is then no longer possible to compare two feature vectors X⃗1 and X⃗2, as there is no
defined metric for a vector of evaluation criteria Q⃗ .

As an example, one might not only want to build a combustion chamber which produces an as high
torque as possible, but might also be looking to minimize the emission of pollutants, and to simultane-
ously make the engine as quiet as possible. It is safe to assume that it is impossible to satisfy all three
evaluation criteria with the same parameter set to the same extent.

7Of course, with finite steps in the parameter space, there is always a chance to step out of the trough . . .

13

Chapter 2. General Considerations and Overview The Geneva Library Collection

Figure 2.4.: The Pareto Frontier is defined by data points that are not dominated by other solutions

2.5.1. Amalgamating Evaluation Criteria

One way an engineer could take to resolve this situation is to specify, where an “ideal” quality for each
criterion is located (which might not always be easy). A common goal would then be to minimize the
deviation from the ideal qualities. Of course this implies replacing the three evaluation criteria with a
single one, and the engineer needs to define an “ideal” solution for each sub-criterion. A new “global”
evaluation criterion for m sub-criteria, depending on n parameters, could then become

Q̃ =
q�

f 1 (x1,...,xn)−Q i d e a l
1

�2
+ ... +

�
f m (x1,...,xn)−Q i d e a l

m

�2
(2.4)

This brings us back to square one, though, as, from an optimization perspective, the new evaluation
criterion Q̃ differs from Q in equation 2.1 by the fact that it is more complicated. In particular, we again
have a metric that allows us to determine whether

Q̃
�

X⃗1

�
<=Q̃

�
X⃗2

�
or Q̃

�
X⃗1

�
>Q̃

�
X⃗2

�
(2.5)

Geneva contains various methods for combining multiple evaluation criteria, including the one de-
scribed in equation 2.4, and allows to define custom combination schemes.

14

The Geneva Library Collection 2.6. Parameter Constraints

Figure 2.5.: Boundary condition involving two parameters

2.5.2. Pareto Optimization

There are other methods for performing multi-criterion optimization, which do not rely on a single
target criterion. They do however often depend on the optimization algorithm. Here, we just want
to hint at a method that is often used with evolutionary algorithms – after all the starting point of the
Geneva library – and that is implemented in Geneva.

In a nutshell, in pareto optimization, one distinguishes between dominated (“pareto-inefficient”) and
dominating (“pareto-efficient”) solutions. Being pareto-inefficient means that for a given feature vector
X⃗ with a set of evaluation criteria f i there is at least one other solution X⃗ ∗ for which at least one f i is
better and none of the other is worse than for X⃗ .

In the end, the user gets a collection of solutions that fulfill the pareto condition and needs to decide
himself which one is best suited for solving his optimization problem. In a way this also means that the
computer-implemented evaluation criterion has been augmented by a “user-implemented” criterion.

Figure 2.4 illustrates this situation on the example of a two-dimensional data sample distributed ran-
domly in a circle. Lower values are preferred. The red dots mark the pareto frontier.

2.6. Parameter Constraints

It may well be that not all combinations of the feature vector X⃗ are allowed. In the easiest case,
the value range of individual parameters is constrained independently from other parameters. For
example, it might be known that the solution to an optimization problem can be found inside of a “box”,

15

Chapter 2. General Considerations and Overview The Geneva Library Collection

in the case of 3 floating point parameters8. In this case each parameter would be constrained to the
lower and upper edge of each dimension.

However, there may also be cases where a constraint for one parameter depends on the current value
of another parameter. This is illustrated on a simple example in figure 2.5. For a real-life example that
would be described through the same equation x+y ≤C (where C is a constant), think of two boxes
that need to be packed side by side into a larger box. Only if the width of both boxes combined is not
larger than the width of the surrounding box, will they fit. This is a problematic situation for optimization
algorithms that will usually try to vary parameters freely in order to find the optimum.

And while this situation could still be resolved rather easily for the case presented in figure 2.5, find-
ing solutions for the general case is far more tricky. Chapter 16 discusses a number of different
approaches in the context of the Geneva library.

2.7. Definition

As a consequence of the variety of difficulties discussed in this chapter, “the best” solution9 of an opti-
mization problem will rarely be found. Rather, one will usually only be able to find “the best accessible”
solution under a given number of constraints.

Among these, “logical constraints”, such as dependencies between parameter-boundaries, play a
dominant role, as do “procedural constraints”, such as the available time and amount of computing
resources. Other very important criteria include the amount and quality of the available information10,
and the quality of the chosen “model of reality” or, in more general terms, the quality of the evalua-
tion criteria. Note that the latter is again closely linked to the experience of the engineer who has
formulated the evaluation functions. We can conclude:

In the context of this document, automated parametric optimization is defined as the search for the best accessible
solutions to a computable mapping X⃗→ f⃗

�
X⃗
�

, under a given set of logical or procedural constraints.

Here X⃗ is a set (x0,x1,...,xn) of parameters, f⃗
�

X⃗
�

may either be a single evaluation criterion, or
a set of possibly conflicting criteria, amongst which further arbitration is needed to choose “the best
available” solution.

8Geneva supports constrained value ranges of integer and floating point parameters. An example for a constrained
parameter type would the GConstrainedDoubleObject, introduced in chapter 11.

9One might also call it the “ideal” solution . . .
10In computer-based optimization, noisy input data can be likened to fuzzy knowledge, or possibly also deficiencies in a

person’s recollection.

16

Chapter 3.

Gradient Descents

When water flows out of a spring, it will follow the path of steepest descent. On its way down-hill, it
might temporarily end up in a local valley, forming a pond or little lake, until it flows over the valley’s
edge. Eventually it will end up in the ocean – in a manner of speaking the global optimum for wa-
ter. These simple and easily understandable facts form the basis of a family of popular optimization
algorithms, whose principles are discussed in this chapter.

Key points: (1) For a continuous mathematical transformation Rn →R1 it is possible to calculate the direction

of steepest descent in a given position X⃗ ∗ by calculating the n partial derivatives
δ f (X⃗)
δxi

(2) Making a step in the
direction of steepest descent will eventually leed to an optimum (albeit not necessarily the global optimum) (3) A
similar method can be used to find optima of transformations represented by computer-implemented functions with
floating point parameters. (4) As the most important difference, the partial derivatives need to be replaced by

the difference quotient
∆ f i (X⃗ ∗)
∆x ∗i

(5) Gradient descents are self-regulating and will efficiently find the next optimum

(6) This algorithm type will easily get stuck in local optima and is best used for the “last mile”, starting from a known
good solution (7) Another disadvantage is a direct dependency of the number of necessary calculations and thus
the algorithm’s computational overhead on the number of parameters taking part in the optimization.

3.1. Mathematical Background

Imagine the f :R1→R1 transformation f (x) =x 2. In order to find f ’s root, one would calculate the
function’s first derivative, then find the value of x for which d f

d x becomes 0. d f
d x represents the gradient

of f . In the case of a mapping f :Rn→R1 the gradient becomes a vector:

g (x⃗)=∇ f =

δ f (x⃗)
δx1
δ f (x⃗)
δx2
...

δ f (x⃗)
δxn

 (3.1)

The seemingly complex equation 3.1 actually expresses a very simple fact: You can find out the

17

Chapter 3. Gradient Descents The Geneva Library Collection

direction of steepest descent g (x⃗) of a function f (x⃗) in a position x⃗ ∗ by calculating the first partial
derivative for each of its parameters x i . g (x⃗ ∗) will then point into the direction into which water would
flow if the function were a mountain. If we follow this path, we will get to the next optimum.

Calculating the partial derivative δ f (x⃗)
δx i

means: Assume all parameters of f (except for x i) to be
constant. Then make an infinitesimal step into the direction of x i and calculate how f changes.

The term “infinitesimal step” means: “a step of infinitely small size”. Infinitesimally small numbers are
a mathematical abstraction, which of course cannot be expressed by “real” quantities.

3.2. Application to Real-Life Problems

The procedure shown in section 3.1 has made the implicit assumption that f (x) is indeed differen-
tiable, i.e. that it is possible to calculate δ f (x⃗)

δx i
for every i . For real-life problems, such as the simulation

of the combustion in a motor, this will rarely be the case.

The simple reason is that it is impossible to express the processes happening during a combustion
through a mathematical function. Instead, what you get is a computer-implemented procedure, and
you just cannot calculate the first derivative of an if-statement.

Gradient descents1 only act on real values, which are usually represented by floating point types (i.e..
float, double and sometimes long double) in C++. Where a computer-based simulation
can give you a single, numerical figure of merit rating the combustion, what you essentially get is a
mapping f :Rn→R1 2. I.e., for every set of floating point parameters describing the combustion, you
get a single floating point value back which describes whether the combustion was “good” or bad.

The associated function might not be differentiable. But nevertheless the procedure discussed in
section 3.1 can be amended in such a way that it can also be applied to non-differentiable functions.
The simple idea is to replace the infinitely small step with one of finite length. Hence, instead of δ f

δx i
,

in a given location x⃗ ∗, we now need to calculate

Di

�
x ∗i
�

:=
∆ f i (x⃗ ∗)
∆x ∗i

=
f (x⃗ ∗+s ∗ e⃗ i)− f (x⃗ ∗)

s
(3.2)

Here s represents a small variation of x i , and e⃗ i is the unit-vector of x i , i.e. a vector of length 1, with
0s for all parameters except for x i (compare equation 3.3). In mathematical terms we would speak
about the difference quotient, as opposed to the differential quotient.

1Note that the term “gradient descent” will usually refer to the computer-implemented procedure involving difference-
quotients in this chapter.

2This of course assumes that the simulation only depends on real values (see section 3.3 for a discussion). It also
treats “floating point” values the same as the mathematical abstraction “real value”. Also note that a simulation might
produce additional figures of merit, such as information about the pollutants being produced. A gradient descent can
only search for the minimum of one of them at a given time.

18

The Geneva Library Collection 3.2. Application to Real-Life Problems

e⃗ i :=

e1

e2
...

e i
...

en

=

0
0
...
1
...
0

(3.3)

By making finite (as opposed to infinitesimal) variations of the x i , we make a small error. The error’s
magnitude will depend on the value of s . s should thus be chosen as small as possible, but needs to
take into account your system’s limited floating point accuracy, particularly as equation 3.2 mandates
that you need to devide a numberical quantity by s.

Starting in a given location X⃗ 0, we now need to calculate the (approximate) direction of steepest
descent, then make a small step in this direction. This procedure needs to be repeated, until we reach
a satisfactory optimum3. The position update in each iteration is calculated according to

X⃗ k+1= X⃗ k −δ∗D�X⃗ k
�

(3.4)

if we are searching for a minimum, or

X⃗ k+1= X⃗ k +δ∗D�X⃗ k
�

(3.5)

if we want to maximize the evaluation function. δ represents the size of the step made in each iteration.
Suitable values need to be chosen individually for each optimization problem. Note that we have used
the definition

D
�
x⃗ ∗� :=

D1

�
x ∗1
�

D2

�
x ∗2
�

...
Dn

�
x ∗n
�
 (3.6)

in equations 3.4 and 3.5.

Different variations of this basic algorithm exist. In particular, it is common to perform “line search”
into the direction of steepest descent before calculating the next difference quotient.

Another important variation is represented by the Conjugate Gradient algorithm.

3See section 17.3 for a discussion of halt criteria

19

Chapter 3. Gradient Descents The Geneva Library Collection

3.3. Inquest

The largest problem is the robustness of the algorithm in the presence of local optima. It is quite likely
that a gradient descent, as defined in this chapter, does not get beyond the next local optimum. As we
are making finite steps, we have a certain likelihood to step out of a valley4. However, it is far more
likely that we will get ever closer to the valley floor instead and will never reach the global optimum.
And unlike water, we cannot simply “fill” the valley and flow over its edge. It is thus recommended to
combine gradient descents with other optimization algorithms, letting them handle the “rough”
work, and using the gradient descent to accurately pinpoint the current optimum.

Then, gradient descents can only deal with real values (i.e. their approximation through floating point
values in computers). You will have to resort to other algorithms if your parameters involve significant
discrete values (such as integer- or boolean-values) that cannot be neglected during the optimization
procedure. Note, though, that some other optimization algorithms also have this restriction.

Another potential disadvantage is the computational overhead. For every iteration, the evaluation
function needs to be executed n+1 times, where n is the number of parameters. This can lead to
very long computations for large values of n . Few other optimization algorithms exhibit this explicit
dependency. For small numbers of parameters however, this can also turn out to your advantage.

On a side note, the fact that you will always have to run the evaluation function exactly n+1 times
leads to some difficulties and inefficiencies when trying to parallelize gradient descents. Section 8.5.4
discusses this in more detail.

Advantages of gradient descents include their relative simplicity – they can be easily implemented and
are thus certainly amongst the most used optimization algorithms in information technology.

Gradient descents are also self adjusting, as a steep descent corresponds to a large multiplicative
factor D

�
X⃗ k
�

to the constant step width δ (compare equations 3.4 and 3.5).

Likewise, the algorithm will make small adjustments in shallow areas. It is thus quite efficient in giving
you a good approximation for the current (possibly local) optimum.

Another disadvantage lies in the fact that you will only be able to deal with problems that can be
described in terms of a mapping f :Rn→R1. Or, in other words, gradient descents are unsuitable for
multi-criterion optimization.

4here we assume that we are searching for a minimum

20

Chapter 4.

Evolutionary Algorithms

Charles Darwin has described the principles of evolution in the 19th century – the results of his re-
search were published in The Origin of Species[16] in 1859. The history of Evolutionary Algorithms
(“EA”) of course doesn’t go back quite as far, but still is impressive.

Already in the 1950s, first attempts were made to model evolution with computers. Artificial evolution
as a means of solving parametric optimization problems became more widely known as a result of
the work of Ingo Rechenberg and Hans-Paul Schwefel on Evolution Strategies (“ES”)[63] [64] in the
late 1960s and 1970s. John Holland introduced another variant – Genetic Algorithms (“GS”)[36] in the
early 1970s.

Evolution Strategies (and Genetic Algorithms), as two major representatives of Evolutionary Algo-
rithms, will be discussed in more detail in this chapter. Other representatives, such as Genetic and
Evolutionary Programming, will not be discussed here.

Key points: (1) ES and GA share a cycle of duplication/recombination , mutation and selection (2) ES act on
floating point numbers (3) ES can cope well with local optima, but is less efficient than a Gradient Descent close
to the global optimum (4) GA act on boolean values (5) Different parameter types are possible and may be mixed
(6) EA suffers from a comparatively large number of configuration parameters, and finding suitable values for them
can be an optimization task by itself

4.1. Common Features

Biological evolution follows a cycle of recombination and selection and also benefits from mutations in
a species’ gene pool. Like their archetype, Evolutionary Algorithms act on a population of individuals
or candidate solutions. This section discusses this and other similarities between different types of
Evolutionary Algorithms.

The discussion centers around the core algorithm, which is identical for Evolution Strategies and
Genetic Algorithms. As shown in listing 4.1, it can be expressed in just a few lines of code.

21

Chapter 4. Evolutionary Algorithms The Geneva Library Collection

Figure 4.1.: Evolutionary Algorithm populations consist of p >=1 parents and c >=p children

Listing 4.1: Evolution Strategies and Genetic Algorithms share a common workflow

1 i n i t P o p u l a t i o n () ; / / Create an i n i t i a l se t o f parents
2 do {
3 recombine () ; / / c reate copies o f parents or recombine t h e i r f ea tu res
4 mutate () ; / / modify i n d i v i d u a l parameters
5 s e l e c t () ; / / eva luate candidate s o l u t i o n s and s e l e c t the best
6
7 generat ion ++; / / Increment the generat ion counter
8 }
9 while (! h a l t ()) ; / / Terminate o p t i m i z a t i o n when a h a l t c r i t e r i o n t r i g g e r s

10 r e t u r n B e s t I n d i v i d u a l () ; / / Return the best i n d i v i d u a l found

4.1.1. Initialization

The algorithm starts with a predefined or randomly initialized selection of individuals specific to a
given optimization problem. This initial set of candidate solutions is called parents. Predefined sets
of individuals will often represent known good solutions. Randomly initialized candidate solutions will
need to observe the boundary conditions for the optimization problem. In C++, candidate solutions
will usually be represented as classes, whose most important component is the feature vector X⃗ , i.e.
a collection of parameters describing the current solution. There will also be an evaluation criterion
Q associated with X⃗ , which rates its quality or – using EA terminology – its fitness. Section 2.2 has

22

The Geneva Library Collection 4.1. Common Features

Figure 4.2.: The most common mutation operator in Evolution Strategies adds gaussian-distributed
random numbers to a given floating point parameter. The success of the optimization
procedure crucially depends on the right choice for the width σ of the gaussian.

discussed this topic in more detail1.

4.1.2. Recombination

In the recombine() step, new candidate solutions are created from the best solutions known so
far – the parents – using a multitude of possible methods. They will generally involve features of their
parents and are thus usually referred to as children. Any number p >=1 of parents may be involved
in the creation of new child individuals, and the number c of children will usually be much larger than
the number of parents. Together, parents and children form a population. Figure 4.1 illustrates this
situation in more detail.

In the most trivial case, children will just be identical copies of a single parent, and will only gain
features of their own in the mutate() step. The process could then be more accurately described
as duplication. Even in this simple case, however, variations of the base algorithm exist. As just one
example, there may be more than one parent, and the likelihood for one of them to be chosen as
the origin for a new child might be chosen evenly or could involve the fitness of this particular parent,
compared to the other parents.

There is a huge variety of recombination schemes involving more than one parent. Amongst the more
usual ones is the cross-over scheme: In this context, a child could be created by adding the first half
of the feature vector of parent A to the second half of parent B. There will also be a likelihood for such
recombination schemes to be actually carried out.

Where the recombination step does involve more than just duplication, it could be likened to the bio-
logical recombination sequence, in which features of the female and male genome are amalgamated.

1Note again, though, that we might be looking to minimize Q – in this sense the terms “quality” and “fitness” are mis-
nomers.

23

Chapter 4. Evolutionary Algorithms The Geneva Library Collection

Figure 4.3.: The Rastrigin function is a common test function for Evolution Strategies. Its major char-
acteristic is a large number of local optima

4.1.3. Mutation

In the mutate() step, random modifications will be applied to all or some parameters of the feature
vector. Depending on the implementation, there will be parameters steering the characteristics and
likelihood of the mutations being used. Section 4.2 will discuss some of the parameters for Evolu-
tionary Strategies. Mutation also happens in natural evolution and might be triggered by radioactivity
(such as cosmic radiation), as well as other causes.

4.1.4. Selection

Finally, in the select() step, child individuals will be rated. It is here that the evaluation function is
required. It will translate the feature vector X⃗ into one or more numeric evaluations (see also section
2.2). In biological terms, the chance of survival scales with the fitness of a candidate solution. This
creates an evolutionary pressure towards better (ideally optimal) solutions.

In programming terms, the chances of survival of an individual are simply determined by sorting the
population according to a given selection criterion. It is here that new parents for the next generation
are selected, and the cycle continues again with the duplication/recombination step, based on the new
set of parents.

Note that in the selection step, again different modes are possible, depending on the chosen sorting
criterion. In the case of a single evaluation criterion:

1. New parents could be chosen from the entire population, including parents. In this case, ex-

24

The Geneva Library Collection 4.1. Common Features

Figure 4.4.: This picture demonstrates how an Evolution Strategy with a single parent searches for
the minimum of the Rastrigin function in two dimensions. The Rastrigin function has a
very large number of local optima (compare figure 4.3). Solely “Gauss” mutation is being
applied to the parameters, and no recombination schemes are being used.

isting parents could again become parents in the next generation, if no children with a higher
fitness were found so far. One consequence of this selection scheme is that the overall fitness
cannot get worse. Experience shows, however, that in this case the algorithm might converge
prematurely. This mode of selection is often referred to as the

�
µ+ν

�
selection scheme in this

manual.

2. New parents could be chosen from the collection of children only. In this case, if no children
with better quality than the parents were found, the overall fitness of the population (defined
as the fitness of the best individual in it) can actually decrease. In theory, the fitness might
even diverge. Experience shows, however, that one will almost always have a satisfying con-
vergence behaviour, with only marginal decreases of the overall quality. The reason for this
is that, through the selection procedure, one will always get the best available solution, given
the chosen scheme, so that there is an evolutionary pressure towards the best solution, which
usually prevents divergence. This mode of selection is often referred to as the

�
µ,ν

�
selection

25

Chapter 4. Evolutionary Algorithms The Geneva Library Collection

Figure 4.5.: Using two gaussians instead of one for the mutation of floating point parameters in Evolu-
tion Strategies might boost performance, if the current best solution is still far away from
the global optimum.

scheme in this manual.

3. Hybrid modes are possible. E.g., Geneva implements a mode, where only one parent of the old
population are retained (unless better children were found), and remaining parents are replaced
by the best children found in the current generation. This mode of selection is often referred to
as the hybrid selection scheme in this manual.

Selection criteria will become more complex and involve further, usually collaborative, information
beyond the mere fitness of an individual, when using more than one evaluation criterion. One example
would be a selection scheme, were parents are selected from the pareto front (compare section 2.5.2
and particularly figure 2.4).

Further selection schemes are possible. As an example, Simulated Annealing, as discussed in chapter
5, is implemented in Geneva as a special sorting mode in what must otherwise be considered to be
evolutionary algorithm.

4.1.5. Halt Criteria

The optimization cycle will continue, until a halt criterion is reached (in which case the halt()
function will return true). There is again an abundance of possible criteria, including:

• The optimization engineer might simply limit the maximum number of iterations or the amount
of time an optimization may take. Such halt criteria will be chosen if – as will almost always be
the case – the resources available for the optimization are limited.

• One might define a quality to be achieved by the optimization and let the optimization run until

26

The Geneva Library Collection 4.2. Evolution Strategies

this is the case. Note that this is dangerous as the optimization progress might stall, and the
optimization process will carry on indefinitely

• It is possible to detect, however, if the optimization has stalled for a number of generations (i.e.
no better solution was found for some time), in which case further optimization might not be
useful and the halt() function could trigger (if desired by the user)

• One might want to combine several of these criteria, e.g. one might demand a quality to be
achieved, but nevertheless terminate the optimization run after a given amount of time, if the
desired quality hasn’t been achieved yet.

Note: As stated in section 2.7, generally the best possible (or ideal) solution to an optimization prob-
lem will rarely be found, particularly for high-dimensional optimization problems. Hence it is usually
impossible to know “how far” a given solution is from the ideal solution, and this distance can conse-
quently not serve as a halt criterion.

4.1.6. Retrieval of the best available solution

When the optimization cycle is halted, there will be one or more “best” solutions. They need to be
returned to the optimization engineer for further processing, or can serve as input for another opti-
mization algorithm.

4.2. Evolution Strategies

Evolution Strategies apply the algorithm of listing 4.1 to optimization problems that solely use real
numbers2 for their parameter definitions. This implies a number of limitations, but still appears to be
the natural way of describing many, particularly technical, optimization problems.

4.2.1. Specific Recombination Schemes

Apart from the “usual” cross-over scheme, real numbers allow for a number of recombination methods
unique to real numbers. These might also involve more than just two individuals. E.g.:

• One might want to choose children only from the parameter space defined by a line stretching
between two parents

• It is possible to define a circle using two parents, which are interpreted to be located at the
opposing ends of this structure

• One might construct a triangle from three parents and then create children randomly on the
edges of the triangle in hyperspace

On a side note, in conjunction with Evolution Strategies, one should carefully evaluate the useful-
ness of recombination schemes for a particular optimization problem. It is generally possible to use

2. . . which are usually represented by one of the system’s native floating point types

27

Chapter 4. Evolutionary Algorithms The Geneva Library Collection

Evolution Strategies without any “real” recombination schemes, using duplication only in the recom-
bine() function.

When using cross-over in particular, one tendency observable in some two-dimensional toy problems
is that, over the course of the optimization, parents will quickly move to neighboring regions of the
parameter space. The recombination might then be unable to add significant new information (i.e.
lead to the evaluation of new regions of the parameter space). However, one should investigate this
for each optimization problem individually.

4.2.2. Specific Mutation Operators

The most common mutation operator in Evolution Strategies adds gaussian distributed random num-
bers to the floating point parameters of the feature vector X⃗ .

Gauss Mutation

There is a number of methods available to create random numbers with a gaussian distribution. By
default, the Geneva library uses the polar form of the Box-Müller transformation[141]. Figure 4.2
shows a histogram of random numbers created with this method, with a mean of 0 and σ=0.5.

Random numbers with a gaussian distribution with mean value 0 will assume small values with a
higher likelihood than larger values. As a result, when being added to the parameters of the feature
vector, small changes of X⃗ will be more likely than large variations.

Figure 4.4 graphically demonstrates the effect of only using gauss mutation in an evolution strategy,
using a single parent and 50 children. The example uses the Rastrigin function, whose minimum the
Evolution Strategy should find. The Rastrigin function is defined by equation 4.1.

f
�

X⃗
�
=10n+

n∑
i=1

�
x 2

i −10cos (2πx i)
�

(4.1)

It is often used to test the performance of real-value based optimization algorithms, due to the very
large number of local optima.

Children are scattered in a spherical cloud around the parent. The density of children decreases
with increasing distance from the parent. This is the effect of using random numbers with a gaussian
distribution for the modification of the feature vector.

As specified by the evolution cycle in listing 4.1, in the next step the best individual of the population
– a child – is selected as the new parent, and the cycle starts afresh. It is clearly visible that the
algorithm quickly approaches the global optimum at (0,0).

The ability to cope with “noisy” quality surfaces is one of the major benefits of Evolution Algorithms.
The reason for this ability becomes apparent when again taking a closer look at the Gauss Mutation in
figure 4.4: While the close proximity of the parent is explored with many candidate solutions, there is
always a small likelihood for children to be created in locations far away from the parent. Hence, even

28

The Geneva Library Collection 4.2. Evolution Strategies

for larger local optima, the algorithm will eventually “jump” out of a valley.

Of course, recombination schemes can help here as well. E.g., in the case of cross-over, if the parents
are not located too close to each other, the resulting individual might not be located in the same local
optimum as its parents.

And last, but certainly not least, the
�
µ,ν

�
selection scheme (compare section 4.1.4) provides a cer-

tain protection against getting stuck in local optima, albeit at the price of having to accept a temporary
decrease in the quality of parents. Note that the

�
µ+ν

�
selection scheme doesn’t give you this level

of protection.

Evolution Strategies also share some features with Gradient Descents. When using Gauss Mutation,
and given a large enough number of children, the direction of the next step will be roughly the direction
of steepest descent (albeit not measured over longer distances than in the case of Gradient Descents).

There is also an inherent problem to using Gauss Mutation, which is not immediately visible. The
gaussian will always have a mean of 0. However, suitable σ values (i.e. the “width” of the bell
curve) are problem dependent and, what is more, the ideal value will change during the course of the
optimization. The value of σ also has a huge influence on how quickly the Evolution Strategy can find
the global optimum, or whether it can find it at all3.

The reason is simple: The geometry of the quality surface, whose minima or maxima the optimization
algorithm needs to find, will differ between different regions. Smooth areas will certainly require a
different step width than “rugged terrain”. Likewise, steep and flat areas of the quality surface will
require differentσ values. Comparing the paraboloid in figure 11.3 with the Rastrigin function in figure
4.3 should make this clear. Choosing a suboptimal value for σ will slow down the progress of the
Evolution Strategy, or can even halt it completely.

As the geometry of the quality surface is not generally accessible in its entirety (or else one would
already know the location of the global optimum), the only solution thus seems to be to adapt σ as
part of the algorithm, or live with a possibly unsuitable, constant σ.

There are again a number of possible adaption strategies, of which some “traditional” strategies are
listed below:

1. The 1/5 rule: The algorithm checks the number of children of a population, whose mutation
resulted in an improved result. If more than 20% of the individuals show an improved quality,
then σ is increased, otherwise decreased.

2. A random, yet directed adaption of sigma: Here an adaption rate ω determines, to what extent
σ should be adapted. The adaption follows the scheme σne w =σol d e G (ω), where G (ω)
represents gaussian-distributed random numbers with a standard deviation of ω.

3. Another method would be to decrease σ by a constant factor for half of the population in each
generation, and to increase it for the other half (with random selection of individuals for increase
and decrease of sigma, so that sigmas do not always get increased or decreased.)

The process of adapting σ as part of the Evolution Strategy is also sometimes called self-adaption.

3σ can thus also be compared to the step width of the gradient descent (compare e.g. equations 3.4 and 3.5). Indeed,
in this document, we will often refer to σ as “step width”.

29

Chapter 4. Evolutionary Algorithms The Geneva Library Collection

Suitable start values for σ again depend on your optimization problem, particularly the allowed value
range of the floating point parameters and the “ruggedness” and general slope of the quality surface.

The situation gets even more complicated when there is more than one quality surface, in the case of
multi-criterion optimization. σ will quite likely be sub-optimal for some of the criteria.

Other Mutation Operators

Gauss Mutation forms the core mutation operator in Evolution Strategies. Given the versatility and
wide value range of floating point variables, however, many other mutation schemes are possible.

As just one example, one might argue that adding gaussian distributed random numbers to a variable
will put too much emphasis on the close proximity of an already known good solution, as the maximum
of the gaussian is at 0. This might be a good strategy if you need to find the exact location of an
optimum, but not, if you suspect that you are still far away from the global optimum.

Figure 4.5 demonstrates a random number distribution that could be used instead of a simple gaussian.
The algorithm, as implemented in the Geneva library, can also mutate the distance between the two
peaks, as well as the width of the gaussians, alongside the feature vector. It is even possible to allow
for different widths and adaption rates of both gaussians. This is a more versatile, but also far more
complex alternative to the “simple” Gauss Mutation.

4.3. Genetic Algorithms

Just like Evolution Strategies, Genetic Algorithms are based on the algorithm shown in listing 4.1.
Instead of real numbers, however, their core parameter type is boolean. Consequently, of the recom-
bination schemes discussed in section 4.2.1, only cross-over can be applied to Genetic algorithms.
Likewise, “Gauss Mutation” is not applicable to Genetic Algorithms. The only possible mutation op-
eration for boolean values is to flip a true value to false and vice versa. What can be varied,
however, is the probability of flips.

Indeed, just like the ω parameter used to adapt the σ values in Gauss Mutation (compare section
4.2.2), it can be treated as part of the feature vector. It is then adapted as part of the usual optimization
cycle. Other means of adapting the mutation probability p exist. Similar to Simulated Annealing (cmp.
chapter 5), p could also be a function of the current generation g and decrease with increasing g .

One could argue that a vector of boolean values, with cross-over as the dominant recombination
scheme, comes much closer to the natural example than a feature vector consisting of real values.
However, for technical problems involving integral or real values, some severe difficulties are involved.

At first sight, there is no big difficulty encoding integers and real values through boolean values. In a
computer, integers and floating point values are coded as binary arrays already, which are equivalent
to arrays of boolean values. However, when bit-flipping is the only accessible mutation, the effect
of this procedure can be almost negligible or extremely big, depending on which bits are flipped.
Hence, in order to avoid completely random mutations, jumping from one end of the allowed value

30

The Geneva Library Collection 4.4. Hybrid Feature Vectors

range to the other, mutations need to be aware of which bits are flipped. Note that another way
of encoding numerals is the Gray Code[136]. However, it doesn’t change the general problem that
mutation operators need to be aware of the entity being mutated. Taking all this into consideration it
seems easier and more natural to use floating point variables to encode real values in optimization
algorithms. This becomes particularly important if you want to allow interaction of different optimization
algorithms, such as using the result of an optimization using algorithm A as input for algorithm B.

4.4. Hybrid Feature Vectors

Real-life optimization problems can rarely involve just one parameter type alone. As an example, feed-
forward neural networks can be described in terms of the number of layers, the number of nodes in
each layer and the weights between nodes of two layers. Hence a full description of a neural network
requires both integer and floating point variables. Optimizing both the network’s architecture and
weights seems to be a worthwhile goal[8] (albeit not as easy to accomplish, as one might think).

It thus makes sense to generalize the concept of Evolutionary Algorithms and to allow not just one
parameter type, but many of them simultaneously4. Boolean, integral and real values will usually be
sufficient to describe any problem. E.g., integers could be used to describe characters or could serve
as a key for any general sort of object. Yes/no decisions can be described in terms of boolean values.
And the majority of parameters in a technical context can well be described with floating point variables
(which will usually only be allowed to assume a limited value range).

In pseudo-mathematical terms, an evaluation criterion mixing parameter types could be described as
a transformation

f :Pn→R1 (4.2)

Here Pn means n parameters of arbitrary type5. The goings-on in an optimization involving only
real-valued feature vectors are naturally the easiest to understand, particularly for problems involv-
ing but two parameters (compare figure 4.4). Mixing different parameter types, particularly in high-
dimensional feature vectors, seems to be a little nondescript in comparison.

Using the picture of a quality surface again6, for hybrid feature vectors to make sense, it seems
necessary to require that small changes of X⃗ lead to small changes of the figure of merit (or
fitness) Q. In other words, we need to be able to determine, whether two feature vectors X⃗1 and X⃗2

are “close”. Where a single bit-flip changes Q by several orders of magnitude, it seems unlikely that an
Evolutionary Algorithm will be able to find good optima, particularly if this situation prevails for many
parameters in X⃗ .

In such situations it can make sense to separate the optimization for different parameter types. I.e.,
one could first optimize all floating point parameters, then all boolean values, and then start again with

4It was one of the core design decisions of the Geneva library to make it possible to mix different parameter types.
5On a side note, what you get in the case of multi-criterion optimization (compare section 2.5) is a mapping f :Pn→Rm

6. . . which is not entirely valid in this case, as we allow integral and boolean values for the parameters

31

Chapter 4. Evolutionary Algorithms The Geneva Library Collection

the floating point values. However, this is certainly not guaranteed to succeed.

Nonetheless the flexibility mixed feature vectors provide make it worthwhile to follow this path.

4.5. Multipopulations

One of the unique features of Evolutionary Algorithms is the ability to make entire populations subject
to evolutionary optimization. In other words, entire Evolutionary Algorithm populations act as individu-
als.

Recombination can simply mean duplication, but can in addition also involve shifts. I.e., entire popula-
tions are offset by a constant amount (in the case of real value or integral parameters). Mutation in this
context means an entire optimization cycle of a “sub-population”. Selection has the same meaning as
in conventional Evolutionary Algorithms. The figure of merit for a population is usually the quality of
the best individual.

The thought can be carried further – i.e., one could create populations of populations of populations
(and so on), although more than 2–3 levels will hardly be useful (and highly computationally expen-
sive).

Using multiple populations, it is possible to explore the parameter space from more than one starting
point. In theory this could also be achieved with multiple parents. However, experience shows that
different parents of the same population tend to quickly move to adjacent areas in the parameter
space, unless there is a means of keeping them apart (which would severely restrict the selection of
new parents).

4.6. Inquest

What remains to be done in this chapter is to summarize the major advantages and disadvantages of
Evolutionary Algorithms. On the positive side, Evolutionary Algorithms offer great flexibility and per-
form very well in the presence of local optima. This algorithm type is also quite easy to implement and,
as will be discussed in chapter 8, can be parallelized in such a way that even missing responses from
networked clients do not matter. The biggest drawback seems to be the huge number of configura-
tion options inherent to any Evolutionary Algorithm (compare section 4.1). Also, particularly Evolution
Strategies perform worse than some other algorithms close to the global optimum. The reason seems
to involve difficulties in adjusting the step width quickly enough, so that the algorithm tends to “jump”
around the optimum. Hence the combination with other algorithms such as Gradient Descents “for the
last mile” makes sense.

32

Chapter 5.

Simulated Annealing

Simulated Annealing is another member of the family of stochastic optimization algorithms. This
chapter gives a short introduction and discusses the variant that has been integrated into the Geneva
library collection.

Key points: (1) Simulated Annealing mimics the behaviour of molten metal when cooling down (2) As the most
important ingredient, the user needs to specify a suitable cooling schedule (3) Finding a suitable cooling schedule
can be difficult, as premature convergence needs to be avoided (4) It is possible to extend the standard Simulated
Annealing algorithm so that it fits almost seamlessly into the Evolutionary Algorithm workflow (5) In this case,
an SA specific selection scheme needs to be implemented (6) Simulated Annealing is also frequently used for
combinatorial problems (7) Like Evolutionary Algorithms, Simulated Annealing can be used both for floating point
parameters and for integral and boolean paramaters.

5.1. Nature as a Role Model

Just like the other algorithms introduced in this document, Simulated Annealing is inspired by pro-
cesses occurring in nature. When molten metal cools down, crystals start to progressively develop in
the liquid before, ultimately, a solid state is reached. The controlled process of cooling down the liquid
(or annealing) determines, how strong the material will be. Cooling the metal down too quickly will
lead to defects, as the atoms can reach a lower energetic state when slowing this procedure down.

While the temperature is high and the atoms moving around in the matter have a high kinetic energy,
the liquid metal can move strough states, whose potential energy is higher than the one before. This
means that the matter is less stable. As the temperature falls, such increases in the potential energy
become less and less likely. In “Simulated Annealing”, candidate solutions can be compared to a
single state of this liquid. And just like the atoms moving aimlessly and unpredictably through the
molten matter, changes to the candidate solution can involve a highly random component.

Major components of the algorithm are:

• A fitness or quality measure Q (equivalent to the potential energy of a state)

• A probability P for a given state (or candidate solution) s to be replaced by a new state s ′.

33

Chapter 5. Simulated Annealing The Geneva Library Collection

• A “temperature” T , which will usually be a function of the current iteration. With increasing
iteration, the temperature will converge towards 0. A high energy leads to a high probability P
for a change of state, a low temperature will decrease P .

• A means of choosing new candidate solutions, based on the current state (or current candidate
solutions).

Simulated Annealing was first introduced in the mid-1980s.

5.2. The Algorithm in Pseudo-Code

Instead of speaking of states, we will from now on use the terms “feature vector” or “candidate solution”,
as we have done for the other algorithms before. As before, it will be referred to by X⃗ , or individual
in listings. Note that X⃗ may contain different parameter types, not only those based on floating point
variables.

Simulated Annealing can be expressed by a simple workflow:

Listing 5.1: The basic workflow of simulated annealing in pseudo code
1 currentCopy = g e t S t a r t I n d i v i d u a l () ; / / Ret r ieve a s t a r t i n g po in t
2
3 do {
4 / / Update the temperature
5 T = getNewTemperature (i t e r a t i o n , T) ;
6
7 / / Create and modify a clone of the currentCopy i n d i v i d u a l
8 workingCopy = adapt (currentCopy) ;
9 / / Ca lcu la te a p r o b a b i l i t y f o r currentCopy to be replaced by currentCopy

10 pPass = P(workingCopy , currentCopy , T) ;
11 / / Get a uni form random numbe i n [0 , 1 [and rep lace currentCopy i f requ i red
12 i f ((rand = get01RNR ()) < pPass) currentCopy = workingCopy ;
13
14 i t e r a t i o n ++; / / Increment the i t e r a t i o n counter
15 } while (! h a l t ()) ;

In each iteration, the energy is updated. Then a working copy of the current solution is created
and small modifications are applied to it. Based on the current temperature and the fitness of the
current- and the working-copy, a probability is calculated for the current solution to be replaced; the
replacement is carried out only with this probability.

“Good” definitions of the “temperature” T depend on the underlying optimization problem. If i signifies
the current iteration, then a possible definition could simply be

Ti+1=αTi (5.1)

where α< 1 is a constant. The result will be an exponential decrease of T that will be the steeper
the smaller α is. Other possibilities for what is frequently called the cooling schedule might depend
directly on the current iteration i ; e.g. a linear decrease:

34

The Geneva Library Collection 5.3. Means of Integration with Evolutionary Algorithms

Ti+1 (i)=Ti −β i (5.2)

where β is a small constant, or

Ti+1 (i)=
γ

l o g (i +δ)
(5.3)

Again, γ and δ are constants.

In accordance with the original proposal for the simulated annealing algorithm, the probability for a
feature vector X⃗ to be replaced by a new vector X⃗ ∗ can be defined as

P
�

X⃗ ,X⃗ ∗,T
�
=

1 if Q
�

X⃗ ∗
�
>Q

�
X⃗
�

e−
Q(X⃗∗)−Q(X⃗)

T otherwise
(5.4)

Q
�

X⃗
�

represents the evaluation function of the optimization problem. The term Q
�

X⃗ ∗
�
>Q

�
X⃗
�

means Q
�

X⃗ ∗
�

is better than Q
�

X⃗
�

. It does not make the statement, that Q should be maximized.

5.3. Means of Integration with Evolutionary Algorithms

Listing 5.1 already looks surprisingly similar to an evolutionary algorithm (compare listing 4.1). In
contrast to it, though, only one “parent” and one “child” are used in each iteration. Among other
consequences, this makes it very difficult to parallelize the algorithm. This document wants to propose
an extension to the basic workflow, so that it fits more easily into the Evolutionary Algorithm workflow.
Indeed, it then becomes possible to express it as an Evolutionary Algorithm with a special selection
scheme. With these modifications, Simulated Annealing can also be parallelized seamlessly, on the
basis of the evaluation of candidate solutions. Listing 5.2 shows the proposed workflow.

The algorithm starts with the creation of a set of feature vectors, sorted according to their fitness. We
will call them parents, in order to achieve a consistent naming scheme. Note that, in contrast to listing
5.1, there may now be more than one currentCopy or starting point.

The optimization cycle commences with the calculation of a new temperature, based on the current it-
eration and the last known temperature. Some possible cooling schemes have already been described
in section 5.2.

In the recombine() step, a number of “child” individuals are created, either – in the simplest case
– by copying parent individuals, or by recombining two or more of them. This can be done in a similar
way as described in section 4.1.2. The population layout will be the same as in figure 4.1.

The mutate() step is the equivalent of the mutate() call in evolutionary algorithms (compare
section 4.1.3). Small modifications are applied to children here1.

1. . . or indeed any kind of modification defined by the user or the provider of an optimization library

35

Chapter 5. Simulated Annealing The Geneva Library Collection

If the recombine() step only involves the creation of exact copies of parent individuals (as would
be common in “traditional” Simulated Annealing implementations), then this is the step where children
gain a unique identity.

Listing 5.2: The basic workflow of simulated annealing, as it will be used in the Geneva library

1 i n i t P o p u l a t i o n () ; / / I n i t i a l i z e the s t a r t i n g po in t (s)
2
3 do {
4 T = getNewTemperature (i t e r a t i o n , T) ; / / Update the temperature
5
6 recombine () ; / / Create new candidate s o l u t i o n s
7 mutate () ; / / Make smal l random changes
8 saSelect (T , i t e r a t i o n) ; / / Se lec t ion scheme s p e c i f i c to s imulated anneal ing
9

10 i t e r a t i o n ++; / / Increment the i t e r a t i o n counter
11 } while (! h a l t ()) ;
12
13 r e t u r n B e s t I n d i v i d u a l () ; / / Return the best i n d i v i d u a l found

The selection scheme saSelect(T, iteration) requires a more thorough explanation, as
it is this part of listing 5.2 that is most specific to Simulated Annealing. Its main purpose is to take
a decision, whether a given parent individual needs to be replaced by a particular child. Listing 5.3
shows a possible implementation in pseudo code:

Listing 5.3: A possible selection scheme for Geneva’s simulated annealing implementation

1 void saSelect (T , i t e r a t i o n) {
2 so r t Ch i l d re n () ; / / Evaluate and s o r t the c h i l d r e n
3
4 for (np=0; np<nParents ; np++) {
5 / / Ca lcu la te a p r o b a b i l i t y t h a t the c h i l d rep laces " i t s " parent
6 pPass = P(popu la t ion [np] , popu la t ion [nParents+np] , T) ;
7 / / Get a uni form random number i n [0 , 1 [and rep lace parent , i f requ i red
8 i f ((rand = get01RNR ()) < prob) popu la t ion [np] = popu la t ion [nParents+np] ;
9 }

10
11 sor tParen ts () ; / / Sor t new parents according to t h e i r f i t n e s s
12 }

In a nutshell, instead of (potentially) replacing just one current working copy with a new candidate
solution, the first nPa r e nt s children are used to (potentially) replace their corresponding parents.
In the listing, population[nParents+np] refers to the child corresponding to the parent
in position np. Note that after sorting, when arranged in an array together with the parents, the
nParents best children are located directly after the parents.

The fact that we are now dealing with an entire population of candidate solutions opens up new
possibilities:

• Parallelization can be done in the same way as for “standard” Evolutionary Algorithms. Indeed
we can use the same code.

36

The Geneva Library Collection 5.4. Inquest

• If the evaluation of children is done in parallel (and the evaluation function lasts sufficiently long),
not more time will be needed for each iterations than if only one working copy would have to be
evaluated

• There is a higher chance that a better solution is found within one iteration, as many new
individuals are created and evaluated in parallel

• It becomes possible to mix different optimization procedures. I.e. one might want to use an SA
selection scheme with “standard” Evolutionary Strategy Gauss mutation.

Note that, when only one parent and one child exist, the entire procedure will be identical to the original
algorithm, as shown in listing 5.1.

In summary we believe that, through our proposal, Simulated Annealing can become even more
powerful.

5.4. Inquest

Just like in the case of “standard” Evolutionary Algorithms, Simulated Annealing seems to suffer from
the many problem-specific parameters and settings (e.g. the selection of a suitable cooling schedule)
the user needs to be aware of.

The algorithm is also frequently used for combinatorial problems, such as the proverbial “travelling
salesman” problem. Here, the mutate() call will rearrange the routes the salesman needs to take,
so that the entire length of his trip gets minimized.

Performing such optimizations will be more difficult with standard Evolutionary Algorithms.

37

Chapter 6.

Swarm Intelligence

This chapter introduces the topic of Swarm Intelligence[10], with a particular focus on Particle Swarm
Optimization (“PSO”). Just like Evolution Strategies, PSO acts on populations (or swarms) of candi-
date solutions (or individuals), and is used mostly for problem domains, whose parameters can be
expressed by floating point numbers. And just like ES, PSO tries to mimic a natural example. The
means of updating the individuals’ positions, however, are entirely different, and based on the interac-
tion of the entire population, rather than isolated action.

Key points: (1) Swarm Intelligence is based on “social” behaviour rather than “merely” local information (2) Major
representatives are Particle Swarm Optimization and Ant Colony Optimization (3) PSO is mostly used for problem
domains, whose parameters can be expressed as floating point numbers (4) ACO is often applied to combinatorial
prolems (5) Both algorithms follow the natural example of different swarm types, as found for insects and animals
(6) Particle Swarm Optimization dates back to the mid nineties and is thus newer than Evolutionary Algorithms
(7) PSO can be represented with just a few lines of code, yet the results are impressive (8) Nevertheless PSO is
no “silver bullet” for all types of optimization problems.

6.1. Particle Swarm Optimization

Historically, Particle Swarm Optimization is far newer than Evolution Strategies. PSO was proposed in
1995 by J.Kennedy and C.Eberhart [41]. It is modelled after the behaviour of different swarm-building
animal- and insect-species. PSOs do not use local gradient information, but rather depend on the
interaction of candidate solutions. Hence their features – and indeed the reason why this algorithm
type does perform optimization (and does so well) – is still subject to an ongoing discussion. Rather
than mathematical descriptions, such research is often based on simulations and models that help to
describe the properties of PSO in a given context.

6.1.1. The Core Algorithm

Listing 6.1 shows a possible implementation of a PSO algorithm. A population of individuals is divided
into neighborhoods, to which a “neighborhood best” individual is assigned. It represents the best

39

Chapter 6. Swarm Intelligence The Geneva Library Collection

solution that was found for this neighborhood during the course of the optimization. A globally best
individual stores the information about the best solution found for the entire swarm so far. Each indi-
vidual is also assigned a personal best, reminiscent of a personal recollection of worthwhile locations
in the parameter space.

Listing 6.1: The basic workflow of particle swarm optimization

1 i n i t P o p u l a t i o n () ; / / I n i t i a l i z e the popu la t ion
2
3 do {
4 e v a l u a t e I n d i v i d u a l s () ; / / Find out about the f i t n e s s o f a l l i n d i v i d u a l s
5
6 updatePersonalBests () ; / / I n i t i a l i z e / update personal , l o c a l and g loba l bests
7 updateNeighborhoodBests () ;
8 updateGlobalBest () ;
9

10 r0 = getUniform01RNR () ; / / Ca lcu la te th ree random numbers uni form i n [0 , 1 [
11 r1 = getUniform01RNR () ;
12 r2 = getUniform01RNR () ;
13
14 / / Update the i n d i v i d u a l s ’ p o s i t i o n s
15 for (ind =0; ind <getNumberOfIndiv iduals () ; ind ++) {
16 for (dim =0; dim<getNumberOfParmatersInIndiv idual () ; dim++) {
17 Del ta [ind] [dim] [i t e r a t i o n] = w * Del ta [ind] [dim] [i t e r a t i o n −1]
18 + c0 * r0 * (x_personalbest [ind] [dim] −x [ind] [dim])
19 + c1 * r1 * (x_nbhbest [neighborhood (ind)] [dim] − x [ind] [dim])
20 + c2 * r2 * (x_g loba lbes t [dim] − x [ind] [dim]) ;
21 x [ind] [dim] += Del ta [ind] [dim] [i t e r a t i o n] ;
22 }
23 }
24
25 i t e r a t i o n ++;
26 } while (! h a l t ()) ;
27
28 r e t u r n B e s t I n d i v i d u a l () ; / / Return the best i n d i v i d u a l found

In each iteration, the position of each particle is updated in such a way that it is drawn towards the
global best, as well as the best individual of its neighborhood. The Geneva library also adds a “per-
sonal best” component for each member of the swarm.

In programming terms, a neighborhood is simply defined as a “slice” of the population. E.g., if the
population is implemented as a std::vector<individual> of 100 candidate solutions, in-
dividuals 0−9 could be the first neighborhood, 10−19 would be the second and so on (for a total of
10 neighborhoods).

Random numbers r0, r1 and r2, distributed evenly in the range [0,1[and multiplied by constants c0,
c1 and c2 are multiplied by the difference-vector from each individual to the personal, local and global
bests. This ensures that a wide area of the parameter space is searched. A “velocity vector” (which in
this document will be referred to as Delta) is calculated from these values. It also includes the last
iteration’s Delta. This way, the recollection of past successes features in the optimization process.

40

The Geneva Library Collection 6.1. Particle Swarm Optimization

Figure 6.1.: This picture demonstrates how a PSO algorithm searches for the minimum of the Rastrigin
function in two dimensions. Note that, in comparison to figure 4.4, the algorithm needs to
search a far bigger area for the optimum, as the allowed value range has been increased.

Once calculated, the position of each individual is updated by adding the corresponding Delta to it.
A possible variant of this algorithm reverts the sign of Delta in case a user-defined number of stalls
has been exceeded. The algorithm then has a chance to excape from local optima.

Just like in the case of the other optimization algorithms discussed in this document, the optimization
continues until a custom halt criterion is reached.

6.1.2. PSO in Action

Figure 6.1 visualizes, how a swarm modelled according to listing 6.1 searches for the minimum of the
Rastrigin function (compare figure 4.3 and appendix A). Note that, in comparison to figure 4.4, the
algorithm needs to search a far bigger area for the optimum, as the allowed value range has been
increased.

41

Chapter 6. Swarm Intelligence The Geneva Library Collection

The algorithm starts with 10 neighborhoods of 20 individuals each. Every individual belonging to the
same neighborhood is initialized with the same values. A global best is selected, whose value is
visible as a small red triangle, identical to the position of one of the neighborhoods. Local bests for
each neighborhood will be identical to that neighborhoods individuals, hence position updates in the
first iteration will only involve a component for the globally best individual.

This changes in the following iterations, as all candidate solutions have now assumed a unique position
in the parameter space. Local bests (visible as small blue triangles) and the global best quickly start
to gather around the global optimum at (0,0). It is visible (and impressive) that the algorithm has only
needed 4 iterations to reduce the overall evaluation from 1.2∗107 to 15951.

6.1.3. Variants

Many different variants of PSO exist. An article by Christian Blum and Xiaodong Li in Blum’s and
Merkle’s book Swarm Intelligence[10, pp. 43-85] lists a number of possibilities. A variant, which re-
places the particle update of lines 15 – 23 in listing 6.1 is shown in listing 6.2. Gaussian-distributed
random numbers are calculated on the basis of the global and local bests, as shown in equation 6.1,
and are added to each individual. Incidentally, this variant was also proposed by Kennedy.

∆⃗i :=G⃗

X⃗ g +X⃗ i

l

2
, ||X⃗ g −X⃗ i

l ||
!

X⃗ i = X⃗ i +∆⃗i (6.1)

A vector ∆⃗i of gaussian-distributed random numbers is calculated for each individual. The mean
of this “gaussian cloud” is located at the average of the positions of the global best X⃗ g and each
individual’s local best X⃗ i

l , the width of the gaussian is the distance from global to local best.

Listing 6.2: Many different variants of PSO exist. In the following code, gaussian-distributed random
numbers are calculated based on the global and local bests, following equation6.1.

1 do {
2 e v a l u a t e I n d i v i d u a l s () ; / / Find out about the f i t n e s s o f a l l i n d i v i d u a l s
3
4 updateLocalBests () ; / / I n i t i a l i z e / update l o c a l and g loba l bests
5 updateGlobalBest () ;
6
7 / / Update the i n d i v i d u a l s ’ p o s i t i o n s
8 for (ind =0; ind <getNumberOfIndiv iduals () ; ind ++) {
9 x [ind] += Del ta (getLocalBest (ind) , getGlobalBest (ind)) ;

10 }
11 } while (! h a l t ()) ;

In the context of the Geneva library, this variant seems to be particularly appealing, as it combines
some of the features of Evolutionary Strategies with particle swarm optimization. The algorithm also
becomes far simpler than the original1.

1Note that, at the time of writing, this PSO-variant hasn’t been implemented in Geneva yet.

42

The Geneva Library Collection 6.2. Ant Colony Optimization

6.2. Ant Colony Optimization

Another major representative of Swarm Intelligence is the “Ant Colony Optimization” (ACO), which is
particularly well suited for combinatorial optimization problems. As the name suggests, the algorithm
is modelled after the foraging behaviour of ant colonies.

While searching for food, ants leave a pheromone trail. The pheromone level along their track depends
on the type and quality of the food found by an individual, as well as the time since the ant has passed.
Other ants will tend to follow an existing pheromone trail, and will thus be able to partake in another
ant’s success. By following the same trail, they will also add to the already existing pheromone trail,
so that other ants are more likely to follow the same route. Ants will also leave an existing trail with
a certain likelihood, so that they may discover other, possibly better food sources. If this would not
happen, all ants would ultimately travel to the same food source.

The algorithm will not be covered here in more detail, as it has not been implemented in Geneva (yet).

6.3. Inquest

Swarm Algorithms feature fewer steering parameters than Evolutionary Algorithms and are thus easier
to handle. Tests show that they perform well even for very “noisy” evaluation functions. They seem
to be more difficult to implement than EA, and there is less potential for parallelization. Effectively
only the evaluation stage can be performed on another host. The position update involves interaction
with other individuals and can thus not easily be parallelized. The algorithm is also more difficult to
implement, particularly when the definition of individuals may involve different parameter types. Thus,
in networked execution, the server might have to sustain a higher load, compared to Evolutionary
Algorithms. Last, but not least, the inner workings are not as well understood as those of Evolutionary
Algorithms. This can make it difficult to predict, whether this algorithm type is the most suitable for a
given problem domain.

43

Chapter 7.

Parameter Scans

Parameter scans can help to gain valuable information about an optimization problem, whose “struc-
ture” in terms of the quality surface is otherwise mostly unknown.

Key points: (1) Parameter scans explore the parameter space either on a grid or through random sampling.
(2) They may be used either to explore a small subset of the parameter space, where one might e.g. want to get a
visual impression of the surface geometry in a 2- or 3-dimensional case. (3) They might also help to find a good
starting point for another optimization algorithm (4) They may serve as an optimization algorithm in their own right
in very simple cases.

Section 2.3.1 has discussed the question, why “brute force” is a bad tactics to find the optima parti-
cularly of high-dimensional optimization problems. “Brute force”, in this context, referred to attempts
to sample the entire parameter space. The major difficulty resulted from the high multiplicity of can-
didate solutions that needed to be evaluated even for very moderate numbers of sampling points per
parameter.

There are some situations, however, where this approach may still be useful. Situations, where pa-
rameter scans can help include:

• Sampling of only part of the parameter set. In 2- and 3-dimensional cases this may help to un-
derstand the structure of the parameter space, e.g. whether it contains a large number of local
optima, or whether it is rather “smooth”; whether it contains “steep valleys” or is predominantly
“flat”. This can affect the choice of configuration parameters for a given optimization algorithm,
or the choice of the algorithm in general.

• When a solution was found using automated parametric optimization, it may be interesting to
explore the immediate vicinity of the optimum

• When no good starting point is known, it may help to perform a short parameter scan throughout
the allowed parameter space in order to find a good starting point.

Two approaches exist for the sampling of the parameter space:

• One may define a grid, i.e. a number of sampling points per parameter, so that for n sampling
points of m floating point parameters n m candidate solutions would need to be evaluated. This

45

Chapter 7. Parameter Scans The Geneva Library Collection

Figure 7.1.: Parameter scans on a regular grid, for a simple parabola (left) and a parabola with overlaid
local optima (right). The grid comprises 40 measurements in each direction, for a total of
1600 measurements. The plots were created with the help of pluggable optimization
monitors (compare section 25.3).

approach is suitable only when sampling a small number of parameters, e.g. when dealing with
a sub-set of the parameter space, or if the sampling range and number of division points is
very limited. The number of sampling points is fixed in this case. It is suitable for exploring an
evaluation function in a 2- or 3-dimensional case, where the results may be visualized.

• It is possible to explore the parameter space with an evenly distributed, random set of sampling
points. In this case one can directly limit the amount of evaluations. Large parameter spaces,
however, will be sampled only very sparsely. This approach is suitable for finding a good starting
point for another optimization algorithm.

Some minor difficulty may arise from the fact that we might be dealing with different parameter types.
This may result in a situation, where different parameters will be explored with a different number
of sampling points. E.g., a boolean parameter can only assume two states, whereas the number of
states a floating point parameter may assume is unlimited for all practical purposes.

Figure 7.1 shows two parameter scans. The left plot shows a scan on a 40x40 grid of a simple
parabole, amounting to 1600 measurements. The right plot shows a similar scan, this time for the
“noisy parabola” (compare appendix A.2 and figure A.2), which contains many local optima. The plots
were created with the help of pluggable optimization monitors (compare section 25.3).

46

Chapter 8.

Parallelization: General Considerations

This chapter discusses means of parallelizing different optimization algorithms, and the requirements
and boundary conditions for running parallelized algorithms in various environments, such as Clusters,
Grids, Clouds and with GPGPUs.

Key points: (1) Applications of the “nicely parallel type” are suited best for execution in parallel and distributed
environments (2) Parallelization of optimization algorithms happens best on the level of evaluation functions (3) Op-
timization algorithms come close to the “nicely parallel” ideal, if in each iteration many candidate solutions need to
be evaluated, and each evaluation takes a long time compared to the overhead of parallelization (4) Task-based
parallelism can be exploited on the level of the optimization algorithm itself, while data-based parallelism might
contribute to the overall speedup mostly on the level of the evaluation function (5) For distributed execution, both
for performance and security reasons, local clusters are best suited (6) Where these are not sufficient, e.g. due
to a lack of resources, it is recommended to use Cloud resources (7) Multi- or many-core machines might be a
good alternative, if the computational demands of the evaluation function are low (8) GPGPU is an alternative
for problems that can be expressed in OpenCL and “fit” into the graphics card’s memory (9) Individuals, whose
evaluation function is expressed in OpenCL, cannot be ported easily to other parallel environments (10) A number
of constraints exist particularly for distributed optimization (11) Among them, the restrictions expressed through
Amdahl’s law seem to be the most severe.

8.1. Application Types

In parallel and distributed environments, several distinct application types can be identified, for which
parallelization yields different results. Two of them are particularly suitable for distributed computing
environments, due to their tolerance to high latencies:

• “Tightly coupled” applications exchange data frequently between sub-applications. An example
would be fine-grained weather simulations where neighboring cells need to exchange data, e.g.
to take into account information on an incoming storm.

• “Nicely parallel” tasks (often also called “loosely coupled”)1 can be subdivided into mostly inde-
pendent sub-tasks whose execution takes a long time. Data exchange is only needed in order

1These used to be referred to as “embarrassingly parallel”, but we live in more optimistic times now . . .

47

Chapter 8. Parallelization: General Considerations The Geneva Library Collection

to send applications to remote sites and in order to retrieve the results of a calculation back.
Many Grid applications are of the nicely parallel type. Examples include simulations in particle
physics or data mining in very large data sets.

• “Streaming” applications produce data on one end of a network and send a continuous stream
of data to a remote site. Little or no data exchange is needed in the opposite direction. Hence
it does not matter, how long the data has travelled through the network.

8.2. Data- and Task-based Parallelism

Parallelization of computing-intensive applications usually happens in one of two ways:

• There might be means of identifying tasks in an application that do not depend on each other
and can thus be executed in parallel. This is called task-based parallelism

• There are also often situations where large data sets need to be processed. It can then make
sense to let identical applications work on subsets of the overall data and to consolidate the
results later.

8.3. Parallelizing Optimization Algorithms

Optimization algorithms act in iterations, and each iteration needs the result from the preceding cycle.
Hence it should be clear that any means of parallelization is restricted to a single iteration.

Figure 4.4 has demonstrated the search for the global minimum of the Rastrigin function. It should
be obvious from this picture that the largest potential for parallelization lies in the evaluation of each
iteration’s candidate solutions.

There is usually no dependency between different individuals. Hence the evaluation of candidate so-
lutions can be individually delegated to another thread of execution or even “shipped off” to another
machine altogether. Note that the latter will usually involve the (de-)serialization of data structures
on the server and the worker node, which introduces a non-negligible overhead and can be compu-
tationally demanding. As a side note, serialization can be done in a portable way in C++ using the
Boost.Serialization library [61].

If the number of candidate solutions is large enough and the evaluation takes long enough, the paral-
lelization of the optimization algorithms introduced in this document can be regarded as being of the
“nicely parallel” type. Small numbers of candidate solutions with short compute times tend more to the
tightly coupled type.

Parellization of the optimization algorithms introduced in this document can be done in the same
manner, albeit to different extents:

• Gradient Descents (see chapter 3) have a fixed number of parameter sets to be evaluated
in each iteration. Unlike all other algorithms discussed in this document, evaluations for all
parameter sets need to be available in order to move on to the next iteration. As a consequence,

48

The Geneva Library Collection 8.4. Characteristics of Parallel and Distributed Environments

in an error-prone environment such as a Wide Area Network, when a response from a worker
node is missing, it is necessary to resubmit the parameter set whose evaluation isn’t available
yet. This will at least double the execution time for that iteration. Also, for a small number of
parameters p , the maximum theoretic speedup is low, as the number of evaluations equals
p+1. Compare also the discussion of Amdahl’s law in section 8.5.2.

• Evolutionary Algorithms (see chapter 4), Particle Swarm Optimization (chapter 6) and Simu-
lated Annealing (chapter 5) can be easily fixed, if a response is missing, by just copying one
of the other solutions. It is even possible to take into account “late returns” (i.e. evaluations
returning after a timeout for a particular iteration), so that no compute time is wasted. Another
advantage of these algorithm types with respect to parallelization is that there is no requirement
for a fixed number of individuals. It is thus possible to adapt the number of individuals to the
available resources.

• Parameter Scans (see chapter 7) may depend on the return of all individuals, if the grid-scan
type has been chosen. Missing returns do not matter for random scans.

Parallelization of other parts of the optimization than “just” evaluation may be possible, but will be highly
dependent on the specific algorithm. A trivial example is the mutation of individuals in Evolutionary
Algorithms. It can be done with negligible overhead in parallel. The recombination step, in comparison,
cannot be performed (easily) simultaneously, if the parallelization uses distributed resources2.

The optimization algorithms themselves will usually benefit most from task-based parallelism. How-
ever, data-based parallelism can often contribute to the overall speedup on the level of the evaluation
function. I.e., if the evaluation step requires the processing of large data sets, it can make sense to ex-
plore means of parallelising the evaluation step itself, through concurrent processing of small portions
of the overall data set.

8.4. Characteristics of Parallel and Distributed Environments

This section discusses some of the characteristics of distributed and parallel environments that are
relevant for parametric optimization with the Geneva library.

8.4.1. Compute Clusters

Clusters are collections of fast computers, usually in a single location, and connected through fast
networks (>= Gigabit Ethernet) or specialized interconnects such as Infiniband™. They are managed
by a batch submission system, such as LSF[102]. Its purpose is to assign incoming, new jobs to free
resources, and enforce limits for their maximum runtime.

2It would of course be possible to ship the parent individuals that form the basis for e.g. a cross-over operation to
another computer, which then also handles the evaluation of the newly formed individual. However, the overhead of
the serialization of the parents will outweigh the benefit of performing the recombination in parallel.

49

Chapter 8. Parallelization: General Considerations The Geneva Library Collection

Figure 8.1.: The GridKa compute cluster is a Tier-1 centre in the academic EGI grid, located at Stein-
buch Centre for Computing of Karlsruhe Institute of Technology. At the time of writing it
comprised over 10000 CPU cores. (Picture used with permission from Steinbuch Centre
for Computing)

Today’s dominant cluster type became mainstream in the early 1990s, then under the name of “Be-
owulf Cluster”. At the time of writing, of the 500 fastest computer systems in the world (of which the
majority is of the cluster type), over 90% were using a form of Linux[82].

Typical characteristics of Clusters include: (1) Traditional clusters will run a single operating system
type, whose properties (installed libraries, version of the kernel) are not accessible to the user (2) The
compute nodes’ hardware will be heterogeneous, as the infrastructure has grown over time. They will
almost always have the x86 (32 or 64 bit) architecture (3) Compute nodes may have local storage
(such as internal hard drives), but will have access to large network storage devices, possibly con-
nected through a Storage Area Network. (4) Network storage may be shared amongst compute nodes,
so that the same programs are accessible to all nodes (5) There will be a single IP space (6) Commu-
nication between compute nodes will rarely be restricted by firewalls (7) Today, each worker node will
comprise 4 or more cores, and have 4 or more Gigabytes of main memory (8) Users can choose how
many nodes they want to allocate (9) Compute nodes will be shared between different jobs (although
the system administrator may limit access to single jobs) (10) Unless the job itself crashes, the server
will almost always get a response. Fault tolerance with respect to missing answers from clients is thus
of minor importance in a local cluster (11) Network latency in a compute cluster will be low, compared

50

The Geneva Library Collection 8.4. Characteristics of Parallel and Distributed Environments

Figure 8.2.: Batch submission systems assign incoming processing requests from users to the most
suitable resource. Picture courtesy of Martina Hardt (designal • conceptional work by
hardt – www.designal.de)

to wide area installations. (12) If a fast interconnect, such as Infiniband, is installed, it is possible to
use “distributed shared memory” via specialized libraries.

Communication between (sub-)applications running on a cluster can happen via the Message Passing
Interface protocol (“MPI”), or can happen on a lower level, through network sockets. Special MPI im-
plementations would be able to take advantage of Infiniband connects. Sometimes no communication
takes place at all at run-time. Clients in a network just start execution, based on the information in
some configuration file or relayed through their command line parameters. At the end of the execution,
the result of the computation will be collected by the server, usually by accessing a corresponding
output file.

Amongst all means of distributed computation, the performance of a parallel application running in
networked mode will likely be highest in a local cluster. However, unless the cluster offers virtual com-
pute nodes and allows users to provide their own disk images, a user will rarely be able to influence
the run-time environment of the worker nodes.

Figure 8.1 shows the GridKa Compute Cluster, among other uses a Tier-1 centre in the Worldwide
LHC Computing Grid, “WLCG”.

51

Chapter 8. Parallelization: General Considerations The Geneva Library Collection

Figure 8.3.: Ian Foster gives a presentation at the Sun booth during Supercomputing 2001 in Den-
ver/USA. It is worth noting the slogan “Sun Powers The Grid” (source: own pictures)

8.4.2. Grids

The term “Grid” describes the vision of making “digital resources” available to users as easily as
electricity. Just like the latter is produced in central power stations and exchanged via the electrical
power grid, today’s network infrastructure can give users access to resources from the computing
world that were formerly unavailable to them. Grid Computing is a catch-all term for the technical and
management infrastructure needed to facilitate this access.

The September 2008 start-up of the Large Hadron Collider (LHC) and the associated LHC Computing
Grid[117] (LCG) at CERN near Geneva, Switzerland, made it obvious that today, Grid Computing has
long moved past the stage of a mere vision. As of 2009, the four particle physics experiments of LHC
– ATLAS, , LHCb and ALICE – have started producing in the range of 10 petabyte3 of data per year4.

Multiple copies of these data sets are stored in compute centres around the world, together with
simulated data, again amounting to several tens of petabytes each year. Many thousand physicists

31 petabyte =1015 bytes
4A failure in the cooling system of LHC prevented data-taking in 2008

52

The Geneva Library Collection 8.4. Characteristics of Parallel and Distributed Environments

Figure 8.4.: Schematic architecture of a global Grid infrastructure. Picture courtesy of Martina Hardt
(designal • conceptional work by hardt – www.designal.de)

world-wide aim at making new physics discoveries, based on the collected data. This search is con-
ducted by repeatedly running analysis programs over large parts of the measured and simulated
particle collisions.

A distributed computing infrastructure – namely a set of interconnected data centres providing users
with a single point of contact – has turned out to be the most suitable set-up to handle this immense
work load. However, when the Large Hadron Collider entered the planning stage in the mid 1990s, no
software infrastructure, let alone an organizational framework, was available that could help orches-
trate this massive demand for computing power.

Subsequently, numerous research projects were started that should help find answers to these ques-
tions. Among the most prominent European ones are the “European Data Grid” (EDG)[109] and its
successors “Enabling Grids for E-SciencE” (EGEE)[106] and “European Grid Infrastructure” (EGI)[110].
All of them have been co-funded by the European Union. With over 300000 CPUs world-wide and
running hundreds of thousands of programs each day, the EGI Grid (which is in large parts also re-
sponsible for processing the LHC data) can be considered to have reached production mode. Figure
8.4 shows a schematic view of the architecture of a Grid of the EGI type. In a sense, the EGI Grid can
be described as a “cluster of clusters”.

53

Chapter 8. Parallelization: General Considerations The Geneva Library Collection

Typical characteristics of Grids include: (1) Users of Grids of the EGI type today almost entirely come
from academia (2) These Grids are often monolithic in the sense that they run a monoculture of operat-
ing systems (The EGI Grid uses almost entirely Scientific Linux on its compute nodes) (3) No single IP
space exists (4) Worker nodes in a local cluster will usually have a private IP, so that programs running
on nodes in different locations will not be able to communicate directly (5) Even if they can, communi-
cation will be restricted by firewalls (6) Security is a moot point in Grid Computing, as academic data
often does not need the same level of protection as data from the commercial regime (7) Turnaround
times even for trivial “Hello World” jobs can be in the range of minutes, as jobs first need to pass
the workload management system and will then enter the queue of a local batch submission system,
from where they are finally assigned to a worker node (compare figure 8.4) (8) Network latencies are
large, as Grids act in a wide-area context (9) Sub-applications will start running at different times, as
they might be running in different geographical locations (10) Running distributed applications in a
Grid environment requires a fault-tolerant software architecture, as (sub-)applications might not return
results (in time) (11) An immense amount of compute power is accessible through Grids. However,
access-rights are tightly regulated, as one needs to become a member of a virtual organization first.
(12) The control over Grid infrastructures and the responsibility for their long-term availability is being
taken over by National Grid Initiatives.

Due to their static nature and the long turn-around times of job submissions, Grids seem to be mostly
suited for batch-type jobs, as they are common e.g. in particle physics. Where Grids are the only
means of computation available, however, they might well be used for parametric optimization. If a
local cluster is available, though, it should be preferred over distributed execution spread over different
geographic locations.

While MPI implementations exist for Grid environments, they are usually maintained by research initia-
tives. Their future might then depend on further (government-)grants being available and their destiny
– just like that of Grid Computing – is not clear. Communication through network sockets (rather than
usage of Grid-specific means of communication) should thus be preferred in Grid-environments, as it
makes optimization algorithms independent from the means of distributed execution and works well
both for clusters, Grids and is also suitable for Cloud installations, as discussed below.

8.4.3. Clouds

Something has clearly changed in the IT landscape, particularly as far as business interest in Grids
is concerned. At Supercomputing 2001 in Denver, USA, Sun (today Oracle) had presented itself with
the slogan “Sun Powers The Grid” (see figure 8.3). It should be noted, though, that the company’s
definition of Grid Computing might be different from today’s understanding of this term, as Sun’s Grid
Engine can indeed be likened to a batch submission system. It is hard to think of a stronger statement
of interest in Grid Computing, though. And even Ian Foster, who had crafted the term “Grid”5 in his
book “The Grid: Blueprint for a New Computing Infrastructure”[23], presented his ideas at the Sun
booth, thus paying respect to Sun’s goals. Likewise, other heavy-weights of the IT sector voiced their
support for the new development. Some companies also contributed heavily to the Grid.

5together with Carl Kesselman

54

The Geneva Library Collection 8.4. Characteristics of Parallel and Distributed Environments

Occasionally one could even hear Grids being touted as the successor of the World Wide Web. Today,
however, it is the authors’ distinct impression that the obvious expectation for the Grid to enter the
main stream business world has not been fulfilled. This is visible in the lack of start-up companies in
the field as much as in less-than-encouraging responses to some EU Grid project’s business initiatives.
Grid deployments, it appears, seem to be mostly limited to scientific applications.

In a 2008 article[28] for the former online-publication GRIDtoday, Prof. Wolfgang Gentzsch, formerly
a Director at Sun Microsystems and later head of the German national Grid initiative D-Grid, even
posed the question: “Grids are dead! Or are they?”6.

In parallel to these developments, over the past few years, ample activity could be seen in a new field,
called Cloud Computing, with contributions coming predominantly from larger enterprises. Just like
in the case of Grid Computing, though, it is difficult to clearly define this term, as it grew out of the
activities of few individuals and organizations. The ultimate, application-defined meaning can thus
hardly be derived from today’s situation. The attention (read: “hype”) around Cloud Computing does
not help to clarify the situation7.

This initial hype is also a striking similarity between Clouds and Grids. Another joint characteristic
is the attempt to leverage the ever increasing speed of today’s network infrastructure. Wide-area
connections today often achieve bandwidths of 10 Gigabit / second, with even faster connections
on the horizon. If this bandwidth could be fully utilized8, the content of (almost) two CDs could be
transferred over a network every second. It then starts to make sense to outsource specific work
items to a remote location. After all, it is not important to a user, where the execution of his program
took place. What is important, though, is the speed of execution, reproducible results and the
prevention of unauthorized access to data and programs.

So it appears as if Clouds and Grids both cater for similar needs. At the very least they share a
common heritage, and it remains to be seen, to what extent synergies between both will lead to a
cooperation rather than competition of ideas and developments.

In the context of this document, Cloud Computing is understood as a means of getting on-demand
access to virtualized or physical compute nodes, possibly running in different geographical locations9.
While the hardware (and possibly the virtualization environment) of such a compute node is defined by
the provider, the Operating System and installed software is defined by the user, who makes a virtual
machine image available to the provider.

Typical characteristics of Clouds include: (1) Contrary to Grid Computing, offers in Cloud Computing
are dominated by commercial providers (2) Access to computing resources happens “on demand”.
(3) Payment for the services depends on the type of resources used and the amount of time they
have been used (4) The actual run-time environment inside of a virtual machine in the cloud is defined
by the user (5) Thus interaction with other users of the Cloud infrastructure is minimized, and the

6Note that, contrary to perception, Prof. Gentzsch’s article does not predict the imminent death of Grid Computing. In-
stead it represents an (albeit strong) criticism of the current state of the art: “I’m sorry to say it, but, so far, grids have
not kept their promise.”

7It is suggested to search for the terms “Grid Computing” and “Cloud Computing” on Google Trends http://www.
google.de/trends to get an impression of the scale of the change.

8which is usually not possible
9Other uses of “The Cloud”, such as online-storage, are not considered here.

55

http://www.google.de/trends
http://www.google.de/trends

Chapter 8. Parallelization: General Considerations The Geneva Library Collection

user can define freely, which libraries and programs need to be installed on the resource (6) Like
Grids, Clouds act in a wide-area context. Hence network latencies are high (7) As clients are started
in virtual machines that are already running, there is no time overhead from workload management
systems and local queues, like it is found in Grids (8) Missing responses from worker nodes running
in a Cloud are arguably less likely than in Grids.

Clouds offer great flexibility, and due to their dynamic nature, most communication restrictions (such
as firewalls) are under the control of the user. There is also no dependency on the local installation,
as it is found in Grids and Clusters. Hence, for doing parametric optimization, they seem to be a more
suitable choice than Grids. Compute nodes can be set up only for the time they are needed for the
optimization, and most large Cloud providers will not restrict you in the amount of resources you need.
Hence you can also tackle very complex and large optimization problems, requiring many individuals.

Just like in the case of Grids and Clusters, and as both server and clients are under the control of the
user, the best means of communication in a wide area context seems to be network sockets. Another
possibility would be web services.

As Clouds act in a Wide-Area context, this means of computation should only be used if network
latencies do not matter much. In all other cases, execution on multi-/manycore-systems or Clusters
should be preferred. However, as Clusters cannot be arbitrarily scaled on demand, Clouds might well
be a good choice to satisfy a short-term demand for large amounts of computing power.

8.4.4. Multithreading

It is not uncommon to find 16 or even 32 CPU cores in today’s worker nodes10. The number of cores
seen by applications can be even higher, if Intels hyperthreading or related technoligies are enabled.
Applications can take direct advantage of this abundance of computing power by starting separate
threads of execution on each core. For optimization algorithms and their inherent parallelizability, this
is an ideal situation. Compared to networked execution, there is practically no overhead involved in
evaluating candidate solutions in parallel, nor is it necessary to serialize candidate solutions to send
them to a remote location. Multithreaded environments make it possible to also parallelize some of
the more obscure parts of optimization algorithms (such as performing cross-over for different children
in parallel in Evolutionary Algorithms).

The biggest drawback of multithreading is the missing scalability of the underlying hardware architec-
ture. In a cluster-environment, if another 100 evaluation units are needed in an optimization algorithm,
one would simply start the required number of jobs. On a single worker node, however, the number of
cores is constant.

Another possible disadvantage, particularly for evaluation functions needing a lot of external input, is
the access to data stored on disks. Then either the network (in case of network storage being used)
or access to the local disk becomes the bottleneck. Remember that, in a multithreaded environment
(and assuming that evaluation functions run for equal amounts of time), all threads might try to ac-
cess the external data at the same time. There are also some rules that need to be followed in a

10The largest system Geneva has been tested on today in multi threaded mode comprised 48 cores

56

The Geneva Library Collection 8.4. Characteristics of Parallel and Distributed Environments

multi-threaded environment. There are not many inherent locking issues in optimization algorithms.
However, evaluation functions need to be re-entrant (i.e. it must be possible for multiple threads to run
the same function in parallel). One general advice that can be given here is to avoid global variables in
evaluation functions. Where these are used, one needs to synchronize access to the variables, which
will slow down the execution.

On a side-note, a very portable and well documented means of creating multithreaded programs in
C++ is the Boost.Thread library[145]. The thread API used there has also mostly become part of the
new C++ standard, C++11 .

8.4.5. GPGPU

GPGPU stands for General Purpose Computation on Graphics Processing Units.

State-of-the-art Graphics Processing Units consist of possibly thousands of specialized processors.
Jointly, they can deliver far beyond a Teraflop11 of computing power. As an example, AMDs Radeon
HD6990 can deliver over 4 Teraflops. This is over an order of magnitude faster than the CPU power
available from the latest processor generations at the time of writing.

As graphics processing units are very specialized, though, access to this resource is not as easy as
it is for general purpose CPUs. GPUs are operated according to the Single Instruction, Multiple Data
model. Here, a single instruction set is executed for many different data sets. Programming graph-
ics cards was thus for a long time a difficult operation, and a unified access model across different
graphics cards was only available for graphics operations (OpenGL, DirectX).

Access models changed over time, as the usefulness of graphics hardware for computationally ex-
pensive general purpose calculations became apparent. As this opened up a new market for vendors
of graphics hardware as well, they gradually started to improve the accessibility of their devices. To-
day, two general purpose programming models prevail: CUDA[15] and OpenCL[51]. CUDA seems
to be dominated by NVidia, while OpenCL is an open standard of the Khronos Group. CUDA-based
OpenCL implementations exist. OpenCL is not limited to graphics hardware, but is meant to be a
general programming model for heterogeneous parallel devices. OpenCL is very similar to the C pro-
gramming language. A program running on a general purpose CPU can start an OpenCL kernel on
the graphics hardware by specifying the path to the OpenCL code. It will then be compiled and loaded
into the graphics hardware. The next call to the OpenCL function can then just use the pre-compiled
code. Parameters can be passed to the OpenCL function, and results returned to the caller. Effectively,
the GPU then acts as a co-processor.

GPGPU would be an almost ideal environment for performing parametric optimization in parallel, if
it were not for the inherent limitations of GPUs. The parallelization of the algorithms discussed in
this document (compare chapters 3, 4, 5) and 6 can be done using the SIMD model. It is then the
evaluation function (plus possibly other code, like the mutation of individuals in EA) that would be
executed for all candidate solutions in parallel on the GPU. And due to the large number of processing
units, a far larger number of individuals could be used, compared to typical cluster installations.

11A Teraflop is the equivalent of 1012 single precision floating point operations per second

57

Chapter 8. Parallelization: General Considerations The Geneva Library Collection

Figure 8.5.: The “speed” of a network consists of two components – latency and bandwidth. Picture
courtesy of Martina Hardt (designal • conceptional work by hardt – www.designal.de)

On the downside, the memory available to each of a GPUs processing units is very limited and, taken
individually, they do not have a particularly high performance. Also, the fact that evaluation functions
need to be implemented in special languages, such as OpenCL, makes it difficult to write general
purpose code. Thus there are also strong limits to what can be done using GPUs in the context of
parametric optimization.

Integration in Geneva may happen either through specialized individuals or through Geneva’s bro-
ker. At the time of writing, an experimental (albeit not publicly available) GPGPU-consumer exists for
Geneva.

8.5. Constraints

This section lists some of the boundary conditions and constraints that govern parallel execution of
optimization algorithms.

8.5.1. Network Speed: Bandwidth versus Latency

In a distributed system, all communication has to pass through a computer network. It is immediately
obvious that the speed of this network forms a limiting factor for any application wishing to access or

58

The Geneva Library Collection 8.5. Constraints

Figure 8.6.: Response times from servers running in different geographic locations show large varia-
tions. Parallel execution in a wide area setting needs to take this into account.

use a remote resource.

In the context of computer networking, however, the term “speed” needs further explanation. Figure
8.5 shows a schematic view of a network. Data is fed into it on one side and is received on the other
end. Two very distinct quantities can be identified that govern how fast a network appears to a user.
The bandwidth of the network describes the amount of data received each second. The latency refers
to the amount of time a single data package needs to pass through the network.

The impact of the network’s speed will vary, depending on the application. One important quantity
here is the amount of information that needs to be exchanged between remote sites. The frequency
of the exchanges is another important factor. Distributed applications featuring frequent exchanges of
small amounts of data will be limited by the network’s latency, while applications with rare exchanges
of large amounts of data will be limited by the bandwidth.

But while the bandwidth could theoretically be scaled to virtually any desired level12, latency does not
scale well. First and foremost, data can not travel faster than the speed of light (c ≈ 3∗108m/s). A
data package en route from Hamburg / Germany to Adelaide in Australia and back again will travel at
least 30806 kilometers[19], which at the speed of light would take roughly 0.1 seconds.

The authors have performed a simple measurement of the roundtrip-time of a network signal, using
the UNIX ping command. ping sends a network package to a remote site and measures the time

12Given sufficient funding, one could just buy or even build additional network connections to increase the bandwidth.

59

Chapter 8. Parallelization: General Considerations The Geneva Library Collection

until the signal returns. 3000 signals each were sent from Karlsruhe Institute of Technology (KIT) to
different sites. Figure 8.6 shows a histogram with the measured roundtrip times from KIT to a local
site, to a system at Steinbeis University (SHB) in Germany, to another computer in North America and
to a fourth system in Australia.

While there is only a negligible amount of time needed to reach a local system, sending a signal to
Australia and back again takes over 0.3 seconds. It should be obvious that a distributed application
with sub-processes in Australia and Germany would be severely slowed down if it needed to exchange
data frequently and wait for the results of a remote calculation. As a comparison, a modern processor
running at a clock frequency of 3 GHz would be capable of performing almost a billion operations within
0.3 seconds in a single core (not taking into account any SIMD units in the CPU). This should make
it clear that it strongly depends on the application type whether distributed or local execution
yields better results.

The fact that a data transfer to Australia takes 0.3 seconds rather than the 0.1 seconds (the “natural”
time needed for the transfer when only taking into account the speed of light) can be easily explained.
Data signals pass different technical components on their way, such as repeaters and routers. Each
of them adds additional delays to the data transfer, as the signal might be buffered until there is free
capacity on a network, or the correct routing has been calculated. Given the large distance to Australia
and the variety and amount of infrastructure a signal needs to pass on its way, it is indeed surprising
that the roundtrip time measures “only” 0.3 seconds.

Putting Latency into Context

It has been said that latency forms a limiting factor for distributed applications. But the problem is not
as bad as it sounds. Average access times of modern hard drives (not of the solid state disk type . . .)
range from 2–15 milliseconds[132]. A data transfer between KIT and Steinbeis Business Academy
takes in comparison around 25 milliseconds. This makes it feasible to create “virtual harddrives”13

using geographically distributed storage devices. Indeed such efforts exist. One example would be
the Andrew Filesystem[105]. And, more recently, many Cloud-based offers have appeared that allow
a user to store data in a remote location and treat it like data on a local storage device.

8.5.2. Amdahl’s Law and its Consequences

Amdahl’s law [130] gives an estimate of the maximum achievable speedup of a parallel or distributed
application. It is shown in equation 8.1.

S=
1

(1−P)+o (N)+ P
N

≤ 1

1−P
(8.1)

Here, S means Speedup, P is the percentage of the overall execution time consumed by execution

13A better, but less intuitive way of referring to this technical development would be a “distributed filesystem”

60

The Geneva Library Collection 8.5. Constraints

Figure 8.7.: Plot of Amdahl’s law: S = 1
(1−P)+o(N)+ P

N

as a function of N , for a fixed value of o (N)/N

and different values of P

units running in parallel, N is the number of processing units contributing to the parallel execution,
and o (N) is the “cost” of communication and synchronization between processes14.

In a nutshell, Amdahl’s law states that the maximum speedup depends on the amount of time spent
in parallel execution, compared to the overall runtime, and that an additional overhead from communi-
cation and synchronization has to be taken into account. Figure 8.7 shows S as a function of N , for a
fixed value of o (N) and different values of P .

While the law in itself may not be very surprising, the magnitude of the effects should very well come
as a surprise: Even if the percentage of parallel execution is as hight as 99.9% and the overhead o (N)
has only a very weak dependence on N , the maximum speedup S achieved with up to 1024 proces-
sors reaches only a disappointing ≈183. What is even more surprising is that the maximum speedup
is not achieved for 1024 processing units, but for N ≈430. This is the effect of the communication and
synchronization overhead15.

Thus, as a general advice, don’t be overambitious with the amount of resources you put into solving
an optimization problem. There is maximum for the useful number of processing units16.

14An example would be the time needed to serialize individuals
15Even without it, there would be a rather disappointing limit to the achievable speedup according to Amdahl’s law.
16Geneva has, for networked execution, chosen to target optimization problems with particularly long running evaluation

functions. This, in turn, has triggered all sorts of other decisions, such as to rate stability of the core library higher than
efficiency. After all, the bulk of the runtime will be consumed by the evaluation function.

61

Chapter 8. Parallelization: General Considerations The Geneva Library Collection

8.5.3. The Dynamic Nature of Distributed Infrastructures

Distributed computing infrastructures are dynamic in nature. This simple statement should not come
as a surprise – where execution and submission of applications do not happen in the same location,
users will usually have no direct control over the remote resources.

As a consequence, computing resources and networks may fail at unpredictable times, data may
not be found in the location it is supposed to be and the people responsible for the maintenance
of the systems may change. In other words, nothing can be taken for granted in a distributed
computing infrastructure.

The only real remedy for such failures is fault tolerance on the application side17. As an example,
if an “unprotected” application18 uses 100 processors in different locations, and each sub-process
has a 1% risk of failure while the application is running, then the entire application will fail with a
probability higher than 60% (≈1−0.99100). The application thus needs to find ways to stay alive
if sub-processes fail.

8.5.4. Fault Tolerance and Timeouts

We have already mentioned that it is easy for Evolutionary Algorithms, Particle Swarm Optimization
and Simulated Annealing to recover from missing responses, and that this is more difficult for Gradient
Descents.

But responses may not simply be missing. In real-life environments, particularly when performing
optimization in distributed environments, response times from worker units can vary. As an exam-
ple, a client might have to share a system with another program that consumes all of the CPU time.
The network might temporarily be clogged, or there can be large differences in the network latency,
particularly in a wide-area context.

If the server does not maintain a permanent connection to the client (which is not useful, if it doesn’t
have to communicate with it for a long time), it cannot know what the status of the client is. The client
might simply have crashed, or a response might come too late for the optimization procedure to be
efficient.

In this situation a timeout needs to be set, after which optimization continues with the next iteration (or
some parameter sets are resubmitted in the case of Gradient Descents).

An additional problem arises here, as optimization algorithms are per se generic, i.e. the algorithm
does not have much information that tells it how long the evaluation function will run.

One possible solution is to record the time passed until the first response from a worker node arrives.
The timeout can then be a multiple of this time frame, and might in addition take into account the
overall number of workernodes.

Note that there is a danger here, though, as this solution implicitly assumes that the runtime
for all evaluation functions is approximately the same. Where some functions run for seconds and

17. . . and patience on the side of their users
18in the sense of an application that fails if at least one of its sub-processes fails

62

The Geneva Library Collection 8.5. Constraints

some for hours, one might have to enact a manual timeout, based on the knowledge of the maximum
runtime. If this is not done, the optimization algorithm will favour solutions with a short runtime of the
evaluation function, which can lead to a big bias in the result of the optimization.

One might in this situation also require that all evaluations return a response, in which case one looses
the benefits of fault tolerance. Or it would be possible to resubmit missing jobs after the timeout, which
can however also cause problems, if the resubmitted parameter sets are always those with a long
runtime.

In summary, if we want to maintain the generic nature of optimization algorithms, unfortunately there
might be no silver bullet, when it comes to suitable timeouts. The best solution can be problem-
dependent.

8.5.5. Quantization Effects

In an ideal environment19, if n worker nodes are available for the processing of m tasks, you may
observe what is commonly called a quantization effect. As an example, if n ==m −1, then there
will still be one remaining task when all worker nodes have completed their initial assignments. A
single worker node then needs to process this item, and all others wait until it is finished. This way,
processing will take twice as long as if n ==m . Likewise, adding more nodes, so that n >m will not
help you, as there are no tasks available for the additional worker nodes. Similarly, if n <m , there
will be thresholds at which an increase of n will lead to added performance. Of course, quantization
effects will be altered by non-ideal environments, where response times of worker nodes will vary. If
your parallel optimization algorithm is fault tolerant and occasionally a response from a worker node is
missing (or the server runs into a timeout), then suitable values for n can be different than in an ideal
environment.

8.5.6. Security

The implications of security on performing parametric optimizations in distributed environments are
virtually endless and cannot be discussed here in detail. E.g., Grids are mostly built for academic
purposes and will consequently have lower security standards than, say, a bank would require.

But even in Cloud Computing, where users have total control over the content of their own virtual
machines and can enact all sorts of security measures (e.g. encrypted disk images, stringent firewall
settings, VPNs between worker node and server, . . .), security will be (by far) lower than it is for local
clusters and particularly single, isolated machines. Hence, before using geographically distributed
worker nodes, one should think twice about the security concept and possible dangers. Ideally, one
should have full control over who has physical or network access to the worker nodes and the server,
and all communication between worker nodes and server should be encrypted20. VPNs between

19An environment where the processing of all work items takes equally long and it does not matter if the worker nodes
start communicating with the server all at once. Also, it is assumed that there will always be answers from all worker
nodes.

20. . . which adds a non-negligible overhead particularly for frequent, small data exchanges.

63

Chapter 8. Parallelization: General Considerations The Geneva Library Collection

Clients and Server are an attractive option.

64

Chapter 9.

More Complex Demos and Use Cases

This chapter introduces a few more complicated demos, meant to illustrate some particular technical
(and administrative) features of optimization problems. They can be used to benchmark the Geneva
library in a more real-life context than is possible with the test functions of appendix A.

9.1. Mapping Semi-Transparent Triangles to a Target Picture

The following toy example illustrates a number of important aspects of optimization algorithms. The
goal of this demo is to replicate a given target picture with semi-transparent triangles. They are
allowed to overlap and can be freely positioned on a canvas with the same geometry as the target
picture. Each triangle has 6 coordinates (three corners), 3 colors and an opaqueness, amounting to a
total of 10 parameters per triangle.

Colors can be represented either as integers in the range [0,256[or floating point values in the range
[0,1[. Likewise the coordinates can either be floating point or integer values. In the latter case they
would represent the x- or y-id of a pixel, in the case of floating point values they could again be varied
in the range [0,1[. Pixel-ids can then be calculated by multiplying the coordinate with the number of
pixels in x- or y-direction. The opaqueness will be a floating point value, variable in the range [0,1[.
Hence this is a prime example for a problem involving different parameter types.

Note that it makes sense to put the triangles with the lowest opaqueness on top, so that triangles with
high opaqueness do not obscure others with a low opaqueness. This will involve sorting the array of
triangles of a candidate picture according to its opaqueness.

When all triangles have been positioned on the canvas, a color can be calculated for each pixel, and
the deviation between this “candidate” and the target picture can be calculated. One simple possibility
is to check for the difference between the colors of each pixel. The quality Q of a candidate solution
can then be represented as shown in equation 9.1.

Q =
∑

Pixel p

�q�
r

p
t −r

p
c

�2
+
q�

g
p
t −g

p
c

�2
+
q�

b
p
t −b

p
c

�2
�

(9.1)

65

Chapter 9. More Complex Demos and Use Cases The Geneva Library Collection

Figure 9.1.: Semi-transparent triangles can be super-imposed in such a way by optimization algo-
rithms that the amalgamation starts to look like a given target picture. In this example, a
clipping from da Vinci’s Mona Lisa has been used. The algorithm starts with a random
collection of 300 triangles (equivalent to 3000 parameters to be optimized). The target
picture is shown in the lower right-hand corner of this figure.

Here t and c refer to a pixel of the target and candidate picture respectively. r, g and b
stand for the red, green and blue value of a pixel.

9.1.1. Mapping the Mona Lisa

The optimization algorithm then needs to minimize Q . Figure 9.1 shows the result of applying this
procedure to a clipping of da Vinci’s Mona Lisa. 300 triangles were used, equivalent to 3000 free
parameters. Note that one will rarely perform optimization runs with such a high number of variables,
as the parameter space becomes very big and it becomes increasingly unlikely to find the global
optimum.

In our example, an Evolution Strategy was used, and all parameters were treated as floating point
values. Tests with Swarm Algorithms didn’t yield satisfactory results, and Gradient Descents failed
completely. This reinforces again the statement that one needs to carefully decide which optimization
algorithm should be used for a given problem. Where no existing experience with this problem domain
exists, it might be useful to try out several algorithms on a simplified version of the problem, before
taking a decision.

66

The Geneva Library Collection 9.1. Mapping Semi-Transparent Triangles to a Target Picture

Figure 9.2.: Mapping a star-like structure using the method described in section 9.1. The target image
is shown in figure 9.3 .

A very appealing feature of the “Mona Lisa example” is that, despite the very high number of parame-
ters, it is indeed possible to see, how close the optimization algorithm has come to the global optimum.
If a perfect mapping is reached (which is very unlikely, as long as the number of triangles is smaller
than the number of pixels), Q becomes 0. The candidate picture will increasingly look like the target
picture, the smaller 0 gets. This is in stark contrast to almost any other high-dimensional optimization
problem, where one will rarely know how close one has come to the global optimum.

Note that equation 9.1 does not use any information whatsoever about the target picture, other then
the color of each pixel1. Also, each triangle serves more than one purpose, as it will usually span
many pixels. As triangles may overlap, different pixels of the same triangle may lead to different colors

1It would be possible to design an evaluation criterion that would increase the similarity between the candidate solution
and the target image more quickly. However, the purpose of this example is not to design the perfect evaluation criterion,
but rather to present optimization algorithms with a difficult problem, on whose example some important characteristics
of real-life optimization problems can be demonstrated.

67

Chapter 9. More Complex Demos and Use Cases The Geneva Library Collection

Figure 9.3.: Our experience shows that, in Evolutionary Algorithms, a
�
µ,ν

�
selection scheme often

performs better than a
�
µ+ν

�
scheme. In both selection schemes, most of the progress

during the mapping of the star-like structure is achieved before the first 20% of the opti-
mization run.

on the candidate image, even though all pixels of the triangle have the same color.

This is also the source of a strong and unpredictable correlation between the parameters of different
triangles, with respect to the quality criterion Q . During the course of the optimization, triangles change
position and size, so that in each iteration different triangles overlap and jointly form the pixels on the
candidate picture. Hence small changes in the parameters can have large effects on the evaluation
function.

If it could be visualized (which is impossible), it would likely show a huge amount of local optima and
many discontinuous regions2. There is also a very large number of global optima3, as the parame-
ters of each two triangles could be exchanged without changing the value of the evaluation criterion
(equation 9.1).

2In the sense that adjacent values can show abrupt changes – we are dealing with an optimization problem here that can
be expressed by discrete rather than continuous variables.

3. . . with identical values, by definition.

68

The Geneva Library Collection 9.1. Mapping Semi-Transparent Triangles to a Target Picture

9.1.2. Mapping a Star-Like Structure

The mapping of the Mona Lisa does show the ability of optimization algorithms to perform optimization
even for very large parameter spaces. However, the target image is quite complex and forces the
algorithm to make use of overlapping triangles to model the details of the target image sufficiently well.
We will now use a much simpler image, consisting of triangles arranged in a circle (compare figure
9.3) in order to demonstrate some characteristics of optimization algorithms.

Rather than 300 triangles, we can restrict the optimization to only 50 triangles (which still amounts to
500 parameters to be optimized). Figure 9.2 shows several candidate solutions during the course of
the optimization, which was limited to a maximum of 20000 iterations (0−−19999). Small numbers
below each picture indicate, to which iteration the solution belongs. The optimization has again been
performed with an Evolution Strategy4, and took about 12 hours in multithreaded mode on an Intel
Core-2 Quad processor.

As a special characteristic, the population has grown from 100 individuals at iteration 0 to 400 individ-
uals over the course of the optimization. Better solutions are relatively easy to find at the beginning
of the optimization. Hence a speedup can be achieved by reducing the size of the population in the
beginning and then letting it grow, as it becomes more and more difficult to find better solutions.

The optimization was done in two modes –
�
µ+ν

�
and

�
µ,ν

�
. The example demonstrates that often

the
�
µ,ν

�
scheme performs better that the

�
µ+ν

�
scheme. In

�
µ,ν

�
, new parents are chosen from

the collection of children only. However, a visible feature in figure 9.3 is that the fitness can worsen in�
µ,ν

�
mode (albeit usually not dramatically). Compare section 4.1.4 for a more detailed explanation.

One of the more dominant features of this optimization – even more visible than in the case of figure 9.1
– is that the target image becomes recognizable very early during the optimization. Figure 9.3 shows
the fitness according to equation 9.1, as a function of the iteration. It is visible that the optimization
very quickly reaches a quality close to the final result, and that, after about 20-30% of the optimization,
the speed of improvements slows down significantly in both modes –

�
µ+ν

�
and

�
µ,ν

�
. This is a

very common behaviour in many types of optimization algorithms and makes it likely, that for
many, even highly computationally expensive, technical optimization problems, satisfactory
results can be achieved within short time5.

Iterations 400−−2000 can be interpreted as local optima, some large, albeit translucent, triangles
can be seen overlapping the whole picture. The other, circular triangles are still rather far away from
the desired target color. Hence moving the large, overlapping triangles will result in a decrease of
quality. Nevertheless the optimization left this particular local optimum before 20% of the iterations
had passed.

The optimization has taken care of the most visible features of the logo first, namely the color and the
circular triangle structure.

4. . . and the Geneva library, of course
5. . . at least if it is not a strict requirement that the global optimum is found instead of an optimum representing a significant

improvement of the figure of merit.

69

Chapter 9. More Complex Demos and Use Cases The Geneva Library Collection

Figure 9.4.: This form of the protein ALA12H was obtained by minimizing the potential energy of the
molecule through variations of the geometry. The picture was created with the molecular
viewer JMol.

9.2. Protein Folding

Proteins are built from chains of amino acids. Due to the intra-molecular forces, proteins never appear
as a linear chain in nature, but usually appear in a “globular” or “fibrous” form. In biology and particular
in the pharmaceutical industry, it is of the utmost importance to understand and predict, in what shape
a protein of a given atomic structure will appear in nature. An exact understanding of this structure
allows for example the design of substances, which will dock to active centers exposed by the protein.
This allows for example to create new drugs to help cure diseases.

Protein folding means the minimization of the potential energy of a molecule by varying its geometric
parameters (e.g. the angles between adjacent atoms, with respect to the backbone). This in itself is
not a complicated procedure. The difficulty, however, lies in the exact calculation of the force field for
a given geometry, which serves as this optimization problem’s evaluation function. In the most simple
case, forces are modelled as “springs”. However, even though the calculation of the potential energy

70

The Geneva Library Collection 9.3. Training Feed Forward Neural Networks

for a given geometry is simple in this case, there are strong limits to the validity of such models. More
realistic models of the force field need to use quantum-mechanical methods, which in turn results in
computationally very expensive evaluation functions.

Hence, for the engineer designing the evaluation function and performing the actual optimization, it is
important to find the right balance between correctness (i.e. the quality of approximations) and speed.
It is also very important to use optimization algorithms that converge quickly towards a satisfactory
optimum, so that as few as possible evaluations of candidate solutions are necessary. Protein folding
thus is an art in itself.

Figure 9.4 shows the result of such an optimization, in the case of Ala12H. A simple force field,
calculated using OpenBabel [50], was used. The picture was created using the JMol [42] molecular
viewer.

One of the difficulties encountered while dealing with this optimization problem was the license of
Open Babel. Both Open Babel and Geneva are Open Source. However, Open Babel uses the GNU
General Public License “GPL” in version 2, while Geneva uses the newer (Affero) GPL version 3. Even
though both have originated from the same source, they are not compatible with each other [26]. As
a direct consequence, the only way to call Open Babel’s functions for the determination of a protein’s
energy in the evaluation function was to use an external program for the evaluation.

Another experience made was that the best results could be obtained when using different optimization
algorithms alternatingly for the optimization of different regions of the protein.

9.3. Training Feed Forward Neural Networks

Training a Feed Forward Neural Network (“FFNN”) means adapting the weights associated to each
node in such a way that, during supervised learning, for a given input sample the deviation of the
actual from the desired output becomes minimal. In other words, training a FFNN means minimizing
equation 9.2,

E (w⃗)=
1

2

p∑
ν=1

∑
k

(y νk −sk (x ν))2 (9.2)

where w⃗ are the weights, p is the total number of input/output patterns used in supervised training, k
are the output nodes, y νk is the actual output of each output node as a result of input pattern x ν , and
sk (x ν) is the desired output associated to x ν .

Traditionally, the training was done by using the error-backpropagation algorithm. It was introduced
not the least because at the time of its invention, computing resources were scarce and expensive.
However, with today’s powerful computers, it is well possible to use standard parametric optimization
algorithms, such as Evolution Strategies, for the minimization of equation 9.2, though [9, 8].

Figure 9.6 illustrates this on the example of two value distributions, for a FFNN with the geometry 2-2-1

71

Chapter 9. More Complex Demos and Use Cases The Geneva Library Collection

Figure 9.5.: A feed-forward neural network calculates the output of a node by applying a sigmoid
function to the weighted sums of the output of preceding nodes (minus a threshold)

(2 input nodes, 2 nodes in one hidden layer and one output node). One data set is evenly distributed
across the entire value range, the network’s desired output for this pattern is 0. The other is confined
to the proximity of the x- and y-axis. The desired output value of the network is 1. It is impossible to
exactly distinguish between both data sets, as they overlap, and the only defining characteristic is the
location on the canvas. However, a neural network must be able to find suitable cuts that help to make
the optimal distinction, with only a minimal error.

In figure 9.6, the output of the trained network is superimposed to the picture (multiplied by 10 and
rounded). It is clearly visible that, by requiring the output of the network to be lower than 0.4, one
would be able to retrieve an almost clean sample of the evenly distributed data set.

Note that it would also be possible to train the architecture of the network, albeit with more difficulty.

72

The Geneva Library Collection 9.3. Training Feed Forward Neural Networks

Figure 9.6.: Input pattern used to train a 2-2-1 network (an even distribution of input values and a
distribution confined to the x- and y-axis) and the output of the network after the training
in different areas of the canvas (multiplied by 10 and rounded).

73

Part II.

Using the Geneva Optimization Library

75

Chapter 10.

Compilation and Installation

This chapter provides an overview of the steps you need to take in order to build the Geneva library
run and run one of the examples. In particular, you will learn here how to compile and install Geneva.

10.1. Prerequisites

A few pre-conditions need to be met in order to use the Geneva library.

Operating System

Geneva is being developed on the Linux platform, specifically under Ubuntu Linux. You should be able
to install it on just about any other recent Linux system and might be able to do the same on other
Unix(-like) systems.

In particular, at the time of writing, we do nightly builds and test-runs on Ubuntu 14.04 and 12.04.
CentOS 7.0, CentOS 6.6 and FreeBSD 9.0 are also among the test-platforms. Geneva is known to
work under various versions of Scientific Linux, although this is not regularly tested by the project
team. Frequent builds also happen on Debian (testing branch), and experimental support exists for
MacOS 10.10. Moreover, Geneva builds and works on MS Windows under the Cygwin environment,
and it is known to compile natively on MS Windows with very few changes, while full support is being
worked on.

Build Environment

Geneva uses the free CMake build environment on all platforms. As this is the same environment
that is used e.g. for Linux’s larger GUI systems1, a recent version should already be available on your
system. If not, then try installing it from the software repositories of your Linux distribution.

1such as KDE

77

Chapter 10. Compilation and Installation The Geneva Library Collection

Figure 10.1.: Binary packages of the Geneva library are available for some Linux flavours in
the dedicated download area of the OpenSUSE Build Service: https://
software.opensuse.org/download/package?project=home:
garcia&package=geneva-opt

Enter the command “cmake --version” on the command line in order to check if this build
environment is installed on your system. Geneva requires CMake 2.8 or newer. Most Linux systems
will provide a pre-compiled CMake package.

You do not need CMake if you install a pre-compiled Geneva package and you use another build
environment (like Autotools, etc.) for your own software.

Compiler

Geneva is developed and tested with different versions of the GNU C++ Compiler g++ and with the
LLVM compiler frontend clang. Any reasonably recent Linux distribution will provide a compatible
GCC version, so you shouldn’t need to worry about this.

Enter the command g++ -v or clang -v at the command prompt in order to check whether
the compiler is already installed and its version. In case the compiler was not installed yet, use your
distribution’s package manager to install it first: the packages are called g++ on Ubuntu and Debian,
and gcc-c++ on Red Hat/Fedora and SUSE variants, clang will be named similarly.

At the time of writing, the most current and recommended version of g++ is 4.9. For clang we
recommend to use the latest version that is available at the time of your tests.

78

https://software.opensuse.org/download/package?project=home:garcia&package=geneva-opt
https://software.opensuse.org/download/package?project=home:garcia&package=geneva-opt
https://software.opensuse.org/download/package?project=home:garcia&package=geneva-opt

The Geneva Library Collection 10.1. Prerequisites

Figure 10.2.: In order to download the Geneva library collection, visit https://launchpad.
net/geneva and click on the green download link on the right side of the page

The build system will try to enable some C++11 constructs, if available g++ version is modern
enough, but it will always enable those (and therefore require C++11 support) with clang.

The Boost library collection

The only external code dependency of Geneva is on the Boost collection of C++ libraries [72]. Thus a
recent version of Boost needs to be installed on your system for both compiling and running Geneva
code. Boost is a peer-reviewed, very portable collection of high-quality, open source components. Its
license (compare appendix D.2) allows you to use Boost libraries with only very few restrictions in a
commercial context. Many of Boost’s libraries constitute a reference implementation for new features
of the new C++ standard C++11, but can be used with older compilers as well.

We currently support Boost version 1.48 or newer, with a recommendation for Boost 1.55. Recent
releases of most Linux distributions seem to ship a modern enough version, so chances are you do
not need to install Boost separately, or can rely on the mechanisms provided by your distribution of

79

https://launchpad.net/geneva
https://launchpad.net/geneva

Chapter 10. Compilation and Installation The Geneva Library Collection

choice to install it. Note that you will need both the binaries of the libraries and the header files.
The latter are contained in packages whose names usually end on -dev or -devel (for instance,
libboost-dev in Debian).

If you install a Geneva binary package, then your system’s package manager will take care of installing
the required Boost dependencies, as these are declared in the Geneva packages.

Listing 10.1 shows two commands that you can use to check which components of Boost are installed
on your system. The first command is valid for systems that are based on the dpkg packaging
system (such as Debian and Ubuntu). The second one can be used on systems using the rpm
package manager (such as Fedora-derivatives or OpenSUSE).

Listing 10.1: Checking installed Boost version on dpkg- or rpm-based systems

1 Debian> dpkg − l | grep − i boost
2 Fedora> rpm −qa | grep − i boost

If the Boost version on your system is older than expected, then you should install a newer version
from source and compile it yourself: instructions can be found on the Boost web page. In this case, we
recommend not to install Boost in a standard system location like /usr, but to use a custom location
instead2, such as /opt/boost.

You will come across two Boost components particularly often when using Geneva:

• Boost’s reference-counted smart pointer shared_ptr [11]. For stability reasons, Geneva
uses these wherever possible.

• The Boost.Serialization library [61] enables Geneva’s objects to be passed over a network.

The appendix gives a short introduction into both (see B.1 and B.2). A very good online description of
many of Boost’s libraries is provided by Boris Schäling [70]. It is also available in book form [71] and
as an e-book. An older, albeit still good introduction in book form was written by Björn Karlsson [43].
For more detailed information we recommend to have a look at Boost’s thorough documentation [73].

10.2. Installation using binary packages

Once the prerequisites are fulfilled, you need to install Geneva. Two alternatives may be available in
your case: either installing from binary packages or building and installing from source.

Starting from version 1.4.1, binary Geneva packages are available for several relevant Linux dis-
tributions, including RedHat Enterprise Linux 7, SUSE Linux Enterprise 12, Ubuntu, Fedora, and a
few others. If you run one of these Linux distributions you may spare yourself some work –and some
CPU-cycles– by installing the corresponding pre-compiled package. As mentioned in the previous
section, not all prerequisites are strictly necessary in this case (but they might be however needed for
your own application linking with Geneva)... If you are out of luck and no binary packages are available

2Reason: As many Linux applications rely on the version already available on your system, you should keep additional
Boost versions separate.

80

The Geneva Library Collection 10.3. Installation from source

for your OS, then you will need to build and install Geneva from source: please proceed to the next
section for more details.

The Geneva binary packages are built by the OpenSUSE Build Service, and are made available at
the corresponding download area: https://software.opensuse.org/download/
package?project=home:garcia&package=geneva-opt. Just select your distri-
bution and follow the (very simple) installation instructions provided there. Figure 10.1 shows that
download page.

Beware, these packages should still be considered “preliminary” and your mileage may vary with them.
Please report any issues or suggestions via Geneva’s bugtracker: https://bugs.launchpad.
net/geneva.

10.3. Installation from source

Building and installing Geneva from source is your only alternative if binary packages are not available
for your operating system, if you want to take a deeper look at the source code, or even to investi-
gate some issue that you might have. The source code is available from the Launchpad software
collaboration portal at https://launchpad.net/geneva. Download the current stable
distribution3. Figure 10.2 shows Launchpad’s download page.

10.3.1. Unpacking

Next, unpack the sources (shown in listing 10.2 on the example of Geneva 1.6 (Ivrea)). /home/de-
veloper/> represents the Unix prompt.

Listing 10.2: Unpacking the Geneva sources

1 / home / developer / > t a r −xvz f geneva−v * . tgz

There should now be a directory /home/developer/geneva-1.6 (Ivrea). You may
now create a build directory anywhere on your system and change to that directory. Thanks to
CMake, Geneva is capable of doing “out of source builds”, meaning that all object files and libraries
resulting from the compilation of Geneva will end up in the build directory instead of cluttering the
source tree. Listing 10.3 shows the necessary commands.

Listing 10.3: Creating a build directory

1 / home / developer / > mkdir b u i l d
2 / home / developer / > cd b u i l d

3If you would like to use the current development version, you can use the command “bzr lp:geneva .” to
download the code. “bzr” is the command line client for the Bazaar version control system. Note, though, that it is
quite possible that you encounter problems with the development release of Geneva.

81

https://software.opensuse.org/download/package?project=home:garcia&package=geneva-opt
https://software.opensuse.org/download/package?project=home:garcia&package=geneva-opt
https://bugs.launchpad.net/geneva
https://bugs.launchpad.net/geneva
https://launchpad.net/geneva

Chapter 10. Compilation and Installation The Geneva Library Collection

There is also a build directory in the source tree that you can use. This is advisable if you intend
to use eclipse for the modification of the Geneva sources rather than “just” writing applications
based on Geneva.

10.3.2. Building

To build Geneva you could just call cmake with the appropriate parameters. However, CMake has
a large amount of options, and the Geneva compilation may be controlled with its own options, so this
can be cumbersome.

Thus, in order to simplify the procedure and make the most useful build options easily accessible, a
configurable build script scripts/prepareBuild.sh is provided in the source tree. This
will take care of running CMake with all the necessary parameters, while keeping the desired options
in a small configuration file, genevaConfig.gcfg. Actually, running this configuration script
without any configuration file is possible, and it will set sensible default values: that will be in many
cases enough for successfully compiling Geneva.

However, if the default values set by prepareBuild.sh are not enough for successfully config-
uring Geneva, or you just want to fine-tune some parameter values, then you will need to provide it
with a configuration file. A sample configuration file with detailed comments is provided in the Geneva
source tree: scripts/genevaConfig.gcfg. You may copy that file, edit its contents, and
subsequently call the build script. Using the configuration script is the recommended way of
building the Geneva library. Listing 10.4 shows the required commands, again on the example of
Geneva 1.6 (Ivrea).

Listing 10.4: Preparing the Geneva build configuration
1 ~developer > cd b u i l d
2 ~developer / bu i ld > cp . . / geneva−1.4.1/ s c r i p t s / genevaConfig . gcfg .
3 ~developer / bu i ld > your−ed i t o r−of−choice . / genevaConfig . gcfg
4 ~developer / bu i ld > . . / geneva−1.4.1/ s c r i p t s / prepareBui ld . sh . / genevaConfig . gcfg

The example assumes that the build-directory as well as the Geneva source tree are located in
the developer’s main directory.

The build configuration

The file genevaConfig.gcfg will look similar to listing 10.5. Under normal circumstances you
will only have to edit the variables BOOSTROOT and INSTALLDIR:

• BOOSTROOT points to the root of your boost installation. Usually this should only be needed
if you are not using your operating system’s version of Boost, but your own manually compiled
copy. The variable’s value in Listing 10.5 assumes that you have installed your own version of
Boost in /opt/boost.

• INSTALLDIR tells the build system whereto the compiled libraries should be copied.

If you run into problems while using the Geneva library, three more settings might be useful:

82

The Geneva Library Collection 10.3. Installation from source

• BUILDMODE lets you build the Geneva library in Debug mode.

• BUILDTESTCODE specifies whether the build system should also build Geneva’s tests. Note
that the build procedure will last substantially longer in this case.

• VERBOSEMAKEFILE, when set to “1”, results in verbose output during the compilation pro-
cedure. This may help to detect erronous compiler- or linker flags applied on your system.

We suggest to read chapter 30.1 in case of problems with Geneva, and particularly to report any
problem you might encounter back to gemfony http://www.gemfony.eu/.

Listing 10.5: A sample genevaConfig.gcfg file
1 CMAKE=/ usr / b in / cmake # Where the cmake executable i s loca ted
2 BOOSTROOT=" / opt / boost " # Where Boost i s i n s t a l l e d
3 #BOOSTLIBS= " / usr / l i b " # Use e i t h e r BOOSTROOT or these two , i f CMake
4 #BOOSTINCL= " / usr / i nc lude " # i s not able to f i n d the Boost i n s t a l l a t i o n
5 BUILDMODE=" Release " # Release or Debug mode
6 BUILDSTD=" auto " # The C++ standard to use f o r b u i l d i n g
7 BUILDTESTCODE=" 0 " # Whether to b u i l d Geneva wi th t e s t code
8 VERBOSEMAKEFILE=" 0 " # Whether to emit comp i l a t i on i n f o rma t i on
9 INSTALLDIR=" / opt / geneva " # Where the Geneva l i b r a r y s h a l l go

You are now ready to compile the Geneva library.

Compiling the Geneva library

As a first step, you need to call make inside of the build-directory. A suitable Makefile was
created when you called the build script in the last section.

Listing 10.6: Compiling the Geneva library
1 / home / developer / bu i ld > make − j 2

The -j 2 option tells make that it should simultaneously compile Geneva on two CPU cores, i.e.
using two parallel “jobs”. You can adjust this number to match the number of CPU cores in your
system. But please note that the compiler requires additional memory for each additional compilation
job you request. You should foresee at least 4 Gigabytes of RAM per job in the case of the GNU
compiler, due to the deeply nested template constructs used in Boost. Your mileage may vary with
different compilers and versions. If unsure, just call make without any arguments.

Depending on your system, the compilation can take a long time. On a reasonably well equipped
system, though, it should not exceed 10-15 minutes4 when using all cores. Note that, at the time of
writing, the Geneva library collection comprised some 170000 lines of code.

4Core i5, 3GHz

83

http://www.gemfony.eu/

Chapter 10. Compilation and Installation The Geneva Library Collection

If everything went okay, you should now have the Geneva libraries and a number of compiled examples.
Try executing one of them (compare listing 10.7). You should then see an output similar to listing 10.8.

Listing 10.7: Executing a first example program
1 / home / developer / bu i ld > cd examples / geneva /01 _GSimpleOptimizer
2 / home / developer / b u i l d / examples / geneva /01 _GSimpleOptimizer > . / GSimpleOptimizer

Listing 10.8: A sample output for GSimpleOptimizer
1 Seeding has s t a r t e d
2 S t a r t i n g an o p t i m i z a t i o n run wi th a lgo r i thm " Evo lu t i ona ry Algor i thm "
3 0: 64.6073443050163
4 1: 25.9597623490252
5 2: 8.89715425355864
6 3: 1.45564799125829
7 4: 0.861887897798893
8 [. . .]
9 999: 7.37074272148514e−13

10 End of o p t i m i z a t i o n reached i n a lgo r i t hm " Evo lu t i ona ry Algor i thm "
11 Done . . .

Congratulations – you did it! You have just sought for the minimum of a paraboloid, using Geneva’s
multithreaded execution mode, and using an evolutionary strategy.

In case you wonder what configuration options are available for the program, try running it with the
-help switch. Also have a look into the config sub-directory. You will find a number of configura-
tion files in JSON format there.

NOTE: Geneva will refuse to run if the configuration files aren’t found. If you do not have
these files, they can be auto-generated for you. Simply make sure that an empty subdirectory
config exists at the place where you call the Geneva-application. A set of configuration files
with default values will then be created for you in this sub-directory.

Information on how to define your own optimization problem will be provided in chapter 11, and in far
more detail in chapter 26.

Installing and using your new Geneva installation

Now that the library was compiled and tested to work correctly, what remains to be done is to let the
build system deploy the library and associated header files to their final location, as well as updating
your system environment to be able to use it.

One option for the first task it to run the following command:

84

The Geneva Library Collection 10.3. Installation from source

Listing 10.9: Installing the compiled library
1 / home / developer / bu i ld > make i n s t a l l

This will copy the Geneva files to the location given by the value of the INSTALLDIR parameter in
the genevaConfig.gcfg file. It is generally not a good idea to run the above command as root,
as you might end up with all the files to deploy in an undesirable location in case of a configuration or
build system error. A way around this is to create a target directory under the ownership of and with
write-permission for the user that has also done the compilation, and to run the install command as
that user.

However, if you want to make a system-wide installation of Geneva, and you cannot rely on the pro-
vided binary packages (see section 10.2), then at least on Linux another option is to create your own
installation package first. This can be achieved with:

Listing 10.10: Creating an installation package

1 / home / developer / bu i ld > sudo make package

The resulting RPM or Debian package can then be installed in the usual way, deploying the Geneva
library in the location /opt/geneva. E.g. under Ubuntu Linux, the following command would
install the resulting Debian package:

Listing 10.11: Installing the installation package

1 / home / developer / bu i ld > dpkg − i geneva−opt−1.4.1−Linux . deb

Note that the resulting package will strongly depend on the Boost version being used. We thus gen-
erally only recommend this procedure, if you have used the Boost version already available on your
system, which should have been installed through your normal package manager. Otherwise the
Boost version the package expects might not match the version it was compiled with.

To be able to use your newly deployed copy of Geneva, you will need to to tell Linux where to find the
new libraries. The easiest possibility is to add the Geneva lib folder to the LD_LIBRARY_PATH
environment variable:

Listing 10.12: Setting the environment

1 / home / developer > export LD_LIBRARY_PATH=/ opt / geneva / l i b : $ {LD_LIBRARY_PATH}

This obviously assumes that Geneva was installed in /opt/geneva/.

To make this setting permanent you should add that statement to your shell’s profile file, for instance
~/.bashrc in the most common setups.

Another alternative is to set the dynamic loader search path system-wide in/etc/ld.so.conf.d/.
Create a file geneva.conf there, with a single line in it: /opt/geneva/lib. Finally, run the
command ldconfig -a to activate the new library path. Consult your system’s documentation
for more details.

85

Chapter 10. Compilation and Installation The Geneva Library Collection

NOTE that the procedure for making compiled libraries known to your system will differ on
operating systems other than Linux.

86

Chapter 11.

Defining a first Optimization Problem

This chapter gives an overview of the steps you need to take in order to solve a first, custom optimiza-
tion problem with the Geneva library.

Key points: (1) Geneva makes a hard distinction between optimization algorithms and problem definitions (2) The
latter can be shared freely amongst available optimization algorithms (3) Some algorithms specifically act on a
given parameter type and will leave the rest of a candidate solutions parameters untouched (4) Individuals (aka
problem definitions) are classes that are derived from the GParameterSet class (5) A number of member
functions needs be present in an individual (6) Of these, the fitnessCalculation(), load_() and
clone_() functions as well as the serialize() function are the most important ones (7) The Go2 class
allows to freely add individuals, mix optimization algorithms to act on these individuals and perform optimization in
various parallelization modes

No extensive coverage will be provided in this chapter on the implications of running Geneva in net-
worked or multithreaded mode. Rather, we will concentrate on formulating the optimization problem
itself. Going from here to parallel execution requires only minimal considerations on the side of the
user and will be discussed in chapter 26.

Note that the example shown below – the search for the minimum of a parabola – is intentionally very
simple, as the goal of this chapter is to give you a “high-level view” of the way Geneva works. Par II of
this manual provides a far more in-depth explanation of the many options Geneva gives you.

This chapter assumes that you have at least a conceptual understanding of what the term “parametric
optimization” entails. If you are unsure, we suggest that you first read chapter 2, as it tries to de-
fine the term “optimization” and what can – and cannot – be done with computer-based optimization
algorithms.

We also assume that you have some background in the C++ programming language. As an example,
you will need to understand terms like “class”, “header”, “template” or “derivation”.

The complete example shown in this chapter is – including everything needed to build the example
– available in the Geneva source tree in the sub-directory examples/geneva/02_GPara-
boloid2D. Once you have compiled Geneva, you should automatically also have access to the
compiled example below the build directory.

87

Chapter 11. Defining a first Optimization Problem The Geneva Library Collection

Iteration-based optimization

Individual
(usually more than one in
an optimization algorithm)

Parameter 1
Type X, constraint C

Parameter 2
Type Y

...

Parameter N
Type X

Evaluation function

Optimization
algorithm A

Can deal with types
X or Y

Optimization
algorithm B

Can only deal with
type X:

type Y will stay constant
during optimization

or

Return of
evaluation results

Provision of
candidate solutions

Figure 11.1.: Geneva makes a hard distinction between the specification of optimization problems
(left) and the optimization algorithms (right) trying to provide candidate solutions with
increasingly better evaluation.

11.1. Outline

Geneva distinguishes between optimization algorithms and the actual optimization problem. Concep-
tually, an optimization problem consists of a set of parameters (possibly equipped with constraints),
and a definition of how to get from these to one or more numerical Evaluation Criteria.

All of this is expressed through C++ classes and objects, which in Geneva terminology are called
Individuals. Individuals comprise the parameter definition as well as the evaluation function(s), which
assign one or more evaluations to a parameter set. In Geneva, optimization problems can be de-
scribed in terms of floating-point, integer or boolean parameters.

Individuals need to comply with the API and functionality Geneva expects, but are otherwise free-form.
They are designed and programmed by the user and, by means of their adherence to the Geneva API,
plug into the existing optimization framework provided by Geneva.

88

The Geneva Library Collection 11.1. Outline

Figure 11.2.: Parametric optimization with the Geneva library is done in three distinct phases.Phases
of parametric optimization

Specific “Individual-objects”, i.e. Individuals equipped with a specific set of parameter values, are
called Candidate Solutions.

It is the task of the algorithm side to equip candidate solutions with suitable parameter values in an
iterative procedure, so that, over time, the evaluation of the candidate solutions improves.

Usually, optimization algorithms will require the evaluation of multiple parameter sets or candidate
solutions in each iteration. In the easiest case with a single evaluation criterion, the parameter set
with the best evaluation at the end of the optimization run represents the best (available1) solution to
an optimization problem.

Individuals can be switched freely between the optimization algorithms implemented in Geneva, so
that you can try out different algorithms with ease, or use the result provided by one algorithm as the
starting point for another algorithm. Note, though, that not all algorithms will modify all implemented
parameter types2.

Figure 11.1 further illustrates this situation.

1See chapter 2 for a discussion of why we speak about the best available solution rather than the best or ideal solution.
2E.g., a gradient descent is not capable of modifying boolean values

89

Chapter 11. Defining a first Optimization Problem The Geneva Library Collection

Figure 11.3.: Two views of a two-dimensional paraboloid. Left: contour lines; right: three-dimensional
view with function values.

11.2. Defining a paraboloid

We will now express the complete optimization problem, including the definition of the individual, the
main() function and a complete build environment.

We will start with the problem definition. In an n-dimensional paraboloid, the “quality” of the parameter
set (n floating point numbers in our case) is defined by equation 11.1.

f (x1,x2,...,xn) =
n∑

i=1

x 2
i = x 2

1+x 2
2+ ... +x 2

n (11.1)

Figure 11.3 shows two views of a two-dimensional parabola3 (as a contour- and a 3D-plot).

Ironically, a high quality in this case means a low function value – here we are searching for a set of
parameters that minimizes the evaluation function. This is a quite common convention – one usually
defines optimization problems so that a minimal value of the evaluation function is best.

As we will see, we have to perform two distinct steps to formulate this problem in the context of
Geneva:

• We need to specify the parameters that describe the problem

• Geneva needs to be informed how to get from a given parameter set to an evaluation

All this is done by overloading the corresponding functions of a C++ class, including some “adminis-
trative” functions. One of the more important administrative duties is the ability to serialize the class,
i.e. bring it into a form that can be transferred over a network. As we will see, though, this is simple,

3The plot was created with the ROOT analysis and visualization framework. See appendix C for a discussion

90

The Geneva Library Collection 11.3. Class Declaration

as Geneva supports you in this task.

11.3. Class Declaration

Listing 11.1 shows the smallest possible declaration of GParaboloidIndividual2D, the
class which lets us search for the minimum of a two-dimensional parabola. It is derived from GPa-
rameterSet, which forms the base class of all individuals (i.e. problem definitions) in Geneva.
Through GParameterSet, a comprehensive infrastructure becomes available to you, which lets
you model your optimization problems in an intuitive way.

Listing 11.1: The declaration of the GParaboloidIndividual2D class

1 class GParabolo id Ind iv idua l2D : public GParameterSet
2 {
3 public :
4 GParabolo id Ind iv idua l2D () ; / / d e f a u l t cons t r uc to r
5 GParabolo id Ind iv idua l2D (const GParabolo id Ind iv idua l2D &) ; / / copy cons t ruc to r
6 v i r t u a l ~GParabolo id Ind iv idua l2D () ; / / d e s t r u c t o r
7
8 protected :
9 / / Loads the data o f another GParabolo id Ind iv idua l2D

10 v i r t u a l void load_ (const GObject *) ;
11 / / Creates a deep clone of t h i s ob jec t
12 v i r t u a l GObject * clone_ () const ;
13
14 / / Ca lcu la tes the ob jec t ’ s q u a l i t y
15 v i r t u a l double f i t n e s s C a l c u l a t i o n () ;
16
17 private :
18 / / Make the c lass access ib le to Boost . S e r i a l i z a t i o n
19 f r iend class boost : : s e r i a l i z a t i o n : : access ;
20
21 / / T r iggers s e r i a l i z a t i o n o f t h i s c lass and i t s base classes .
22 template <typename Archive >
23 void s e r i a l i z e (Archive & ar , const unsigned i n t) {
24 using boost : : s e r i a l i z a t i o n : : make_nvp ;
25 / / S e r i a l i z e the base c lass
26 ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(GParameterSet) ;
27 / / Add other v a r i a b l e s here l i k e t h i s :
28 / / ar & BOOST_SERIALIZATION_NVP(sampleVar iable) ;
29 }
30
31 const double PAR_MIN_ ; / / Lower boundary f o r parameters
32 const double PAR_MAX_; / / Upper boundary f o r parameters
33 } ;

91

Chapter 11. Defining a first Optimization Problem The Geneva Library Collection

You can find further, far more detailed information about individuals in chapter 15. The construction of
an individual from parameter objects is illustrated in figure 15.1 on page 146 4.

11.4. Member functions

In this section we will discuss GParaboloidIndividual2D’s member functions one by one.

The constructor

In Geneva, you will always need to provide a default constructor for your individuals5.

Listing 11.2: The constructor of the GParaboloidIndividual2D class

1 GParabolo id Ind iv idua l2D : : GParabolo id Ind iv idua l2D ()
2 : GParameterSet ()
3 , PAR_MIN_(−10.)
4 , PAR_MAX_(1 0 .)
5 {
6 for (s td : : s i z e _ t npar =0; npar <2; npar ++) {
7 / / GConstrainedDoubleObject i s cons t ra ined to [PAR_MIN_ :PAR_MAX_[
8 boost : : shared_ptr <GConstrainedDoubleObject >
9 gcdo_ptr (new GConstrainedDoubleObject (PAR_MIN_, PAR_MAX_)) ;

10 / / Add the parameters to t h i s i n d i v i d u a l
11 this−>push_back (gcdo_ptr) ;
12 }
13 }

Apart from initializing the parent class and the local variables, we use the constructor to fill the in-
dividual with parameter objects in a loop. We have chosen a problem that demands floating point
parameters6, and we want them to be limited in their allowed value range.

A good choice to describe our parameters are GConstrainedDoubleObject objects. The
object wraps a single variable, whose values are constrained to the [PAR_MIN_:PAR_MAX_[
range. The actual value of the parameter is set to a random value in the allowed range automatically7.
Another suitable parameter class would have been the GConstrainedDoubleCollection.

The GConstrainedDoubleObject is wrapped into a boost::shared_ptr smart
pointer from the Boost library collection. Its main task is to delete the object pointed to when the
last reference to it becomes invalid. This way we do not have to care ourselves for the when and
if of deleting dynamically allocated objects. Its duties could thus be compared to what a garbage

4Note that you can also build “parameter trees”, as Geneva comprises object collections that can themselves be stored
in individuals and can hold objects of their own type.

5This requirement results from the Boost.Serialization library which, in order to be able to de-serialize an object, will first
default-construct it, then fill its parameters with values. There is no requirement for a default-constructor to be public.

6As was said already, Geneva can also cope with integer and boolean values
7One can of course also specify the desired value, if needed

92

The Geneva Library Collection 11.4. Member functions

collector does in Java or C#. In most other respects a boost::shared_ptr behaves like a
standard C/C++ pointer. boost::shared_ptr is discussed in more detail in appendix B.1.

Finally, we add the parameter object to the individual. Its interface is almost identical to a std::vector8.
You can thus just use the usual push_back() function to add the smart pointer to the individual.

For simplicity reasons, we do this inside of the constructor. It would also have been possible to attach
such objects from outside the individual. We recommend one of two options to attach parameters to
inviduals:

• EITHER: Keep parameter definition and evaluation in one class and define parameters in the
constructor or a member function of the individual.

• OR: Create a factory class that builds individuals of a given type. Geneva has a complete
framework for this (see e.g. sections 33.4 and 26.2). This is the preferred way.

We can also set the value of theGConstrainedDoubleObject object with thesetValue()
member function (compare listing 11.3. Here, we choose a random value in the allowed value range.
Chapter 31 discusses the topic of random number generation in the Geneva context in detail. Please
also note that, in all classes derived from GParameterSet, you have access to a random
number generator.

Listing 11.3: It is also possible to set the value if a GConstrainedDoubleObject manually

1 gcdo_ptr−>setValue (gr . un i fo rm_rea l <double >(PAR_MIN_, PAR_MAX_)) ;

Naming schemes

We take a short look at the naming scheme of parameter objects:

• All Geneva classes start with an upper-case “G”

• Constrained parameter types clearly say so in the class name

• The target type is contained in the name

• As we are using a class to describe the parameter, we call it an “Object”. In comparison, there
is also a GDoubleCollection, which is a std::vector-style collection of uncon-
strained double values. As these are not individually encapsulated by an object, but are instead
contained in a collection, the class is called a GDoubleCollection (without the term
Object). There are many other parameter classes, e.g. GConstrainedInt32Object
(whose meaning should now be clear) or a GDoubleObjectCollection, which rep-
resents a collection of unconstrained double parameters, each of which is encapsulated in its
own object and can thus be treated individually.

8Indeed, one of its parent classes wraps a std::vector<> .

93

Chapter 11. Defining a first Optimization Problem The Geneva Library Collection

Mixing parameter types

You can freely mix different parameter types in an individual. I.e., in the constructor you could also
add a GBooleanObject or a GConstrainedInt32Object. We do not do this here, to
keep the example simple. You could also have added collections of parameter objects (or collections
of collections, if you really wanted to) to the individual, thus creating a sort of “tree” of parameters9.
For the sake of simplicity, however, here we just add the parameters at the root level.

The copy constructor

Listing 11.4: The copy constructor of the GParaboloidIndividual2D class

1 GParabolo id Ind iv idua l2D : : GParabolo id Ind iv idua l2D (const GParabolo id Ind iv idua l2D& cp)
2 : GParameterSet (cp)
3 , PAR_MIN_(−10.)
4 , PAR_MAX_(10)
5 { / * noth ing * / }

As we only have constant local data, the only real task ofGParaboloidIndividual2D’s copy
constructor is to hand the object to be copied to the parent class. The actual copying of parameter
objects is done for you by the GParameterSet class. For more complex use cases you will of
course have to copy any necessary local data members of the individual as well, just like in any other
copy constructor.

The load_() and clone_() functions

In an individual, Geneva can mix parameters of different types. This is possible, as the different
parameter types share a common base class and API. The class at the root level is called GObject.

Consequently, all loading and cloning of Geneva objects needs to happen through pointers to this
base class. For this purpose, Geneva mandates that every class that directly or indirectly derives from
GObject implements a load_() function. Instantiable classes (those that are not purely virtual)
in addition need to support the clone_() function.

User interaction with these functions then happens through two functions inGObject, calledload()
and clone() (note the missing underscores!) which are defined in GObject10.

Both load_() and clone_() are declared protected, as the user doesn’t need to call them
directly. Derived classes need to be able to access particularly the load_() function, though.

The clone_() function is trivial, as it only returns a copy-constructed object. The implementation
can be found in listing 11.5.

9This can be useful for formulating more complex problems. E.g., if you want to describe a feed-forward neural network,
you might want to have individual collections of parameters for each layer

10The clone() function has additional functionality. For example, it can convert the result of the cloning procedure “on
the fly” to a desired target type, using a template argument. Details can be found in part II.

94

The Geneva Library Collection 11.4. Member functions

Listing 11.5: The clone() function simply returns a copy-constructed GParaboloidIndividual2D object

1 GObject * GParabolo id Ind iv idua l2D : : clone_ () const {
2 return new GParabolo id Ind iv idua l2D (* th is) ;
3 }

The load_() function is slightly more complex, as it (usually11) needs to convert its argument to
the correct type and also needs to take care of loading the parent class’es data. Listing 11.6 shows
the details.

Listing 11.6: The load() function loads the classes own data and that of the parent class

1 void GParabolo id Ind iv idua l2D : : load_ (const GObject * cp)
2 {
3 const GParabolo id Ind iv idua l2D * p_load
4 = GObject : : gobject_convers ion <GParabolo idInd iv idual2D >(cp) ;
5
6 / / Load our parent ’ s data
7 GParameterSet : : load_ (cp) ;
8
9 / / No l o c a l data

10 / / sampleVar iable = p_load−>sampleVar iable ;
11 }

First, cp is converted to the target type. The function being used here is defined in GObject.
Internally, checks are being made in DEBUG mode to ensure that one doesn’t try to load an object’s
data into itself, or that the GObject-pointer is actually convertible to the target type. An exception
will be thrown when this is not the case.

Strictly speaking, the conversion would not have been necessary here, as the next step – calling the
parent class’es load_() function – would have been possible with the GObject-pointer alone.
We have no local data, so we do not need to access any data members local to this class declaration
in cp. But it is convenient to get the checks for self-assignment and conversion errors, so we do the
conversion anyway. The commented out line at the end of the function shows how to load local data.

The actual fitness calculation

Listing 11.7 shows how to calculate the fitness from the parameters stored in the individual.

Listing 11.7: The fitness calculation

1 double GParabolo id Ind iv idua l2D : : f i t n e s s C a l c u l a t i o n () {
2 double r e s u l t = 0 . ; / / W i l l hold the r e s u l t
3 std : : vector <double> parVec ; / / W i l l hold the parameters
4
5 this−>s t reaml ine (parVec) ; / / Ret r ieve the parameters
6
7 / / Do the ac tua l c a l c u l a t i o n

11Our case is so simple, though, that no local data needs to be loaded

95

Chapter 11. Defining a first Optimization Problem The Geneva Library Collection

8 for (s td : : s i z e _ t i =0; i <parVec . s ize () ; i ++) {
9 r e s u l t += parVec [i] * parVec [i] ;

10 }
11
12 return r e s u l t ;
13 }

The first step is to extract the parameter values. Remember that parameters are usually encapsulated
in objects, and that Geneva allows you to freely mix parameter objects holding different types, and
to even arrange them in the form of a tree structure. Hence we need to make use of some tools to
extract the parameter values. Three possibilities exist:

• The easiest possibility is shown in listing 11.7. The streamline() function extracts all
parameter values of a chosen type (in this case double) in the order in which they were
registered, and adds them to a std::vector. While streamline() actually is a function
template, the desired type is derived from the type stored in the std::vector – you do not need
to specify it separately (but can do so like this streamline<double>() if you want it
for reasons of clarity).

• If you know the structure of the individual, you can access the parameter objects directly. Re-
member that the individual has a vector interface, so you can use the usual at() and op-
erator[] functions). Keep in mind, though, that what you will get in this way will be base
pointers to GObject, which need to be converted first.

• The conversion_iterator lets you iterate over all parameters of a given type on a
given level of the tree. It will skip objects of different type, and it will return the objects readily
converted to your desired target type. E.g., you could this way extract all GConstrainedDou-
bleObject objects from the GParaboloidIndividual2D object.

The last two options will be discussed in more detail in chapter 15.

As the next and final step we can use the extracted parameters to do the actual fitness or quality
calculation – in our case a simple parabola.

There is one more thing to note: fitnessCalculation() is again labelled as protected.
It is hence impossible for users to directly access this function. Instead, they will use the individual’s
fitness() function, as defined in a base class12.

The reason for this setup is that we want to avoid to re-calculate the fitness whenever we want to
know the quality of an individual. Re-calculation is after all only necessary when the parameters have
changed. Thus fitness() will internally store the fitness for the current parameter set, once it
has been calculated. As soon as the parameters change, fitness() will call fitnessCal-
culation() again. Otherwise it will return the cached value.

12The GOptimizableEntity class, discussed in more detail in section 12.1.4

96

The Geneva Library Collection 11.5. The main() function

Serialization

In order for an object to be transferred over a network connection (or for it to be stored on disk), it
needs to be translated into a different format. This could e.g. be XML or the more efficient (but less
portable in heterogeneous environments) binary format.

Thanks to the magic of the Boost.Serialization library (see appendix B.2), serializing an individual is
mostly a matter of listing the data members to be serialized. This happens inside of the serial-
ize() function, shown at the end of listing 11.1.

In our simple example without local data, all we need to do is to trigger serialization of the parent class.
Chapter 26 will discuss a more complete example, involving local data.

In order to make the class known to the Boost.Serialization library, you will finally have to add a line
each to the implementation (i.e. the .cpp file) of your individual (in this case GParaboloidIn-
dividual2D.cpp) and to the declaration (i.e. the .hpp file):

Listing 11.8: The Boost.Serialization export statements
1 BOOST_CLASS_EXPORT_KEY(GParabolo id Ind iv idua l2D) / / Goes i n t o the header
2 BOOST_CLASS_EXPORT_IMPLEMENT(GParabolo id Ind iv idua l2D) / / Goes i n t o the . cpp f i l e

The missing semicolon at the end of BOOST_CLASS_EXPORT statements is no mistake, as these
are macros. We suggest that you have a look at the actual code of GParaboidIndividual2D
in the Geneva distribution at this point.

11.5. The main() function

Now that we have the individual in place we need to take care of the main function (see listing 11.9).

Listing 11.9: The main() function
1 using namespace Gem: : Geneva ;
2 i n t main (i n t argc , char ** argv) {
3 Go2 go (argc , argv , " con f i g / go2 . json ") ;
4
5 / /−−−
6 / / I n i t i a l i z e a c l i e n t , i f requested
7 i f (go . c l ientMode ()) return go . c l ien tRun () ;
8
9 / /−−−

10 / / Add i n d i v i d u a l s and a lgo r i thms and perform the ac tua l o p t i m i z a t i o n cyc le
11
12 / / Make an i n d i v i d u a l known to the op t im i ze r
13 boost : : shared_ptr <GParabolo idInd iv idual2D > p (new GParabolo id Ind iv idua l2D ()) ;
14 go . push_back (p) ;
15
16 / / You could add an a lgo r i t hm to the Go2 c lass here , which would always be
17 / / executed f i r s t . Not s p e c i f i y i n g any a lgor i thms r e s u l t s i n the d e f a u l t
18 / / d e f a u l t a lgor i thm , unless other a lgo r i thms s p e c i f i e d on the command l i n e .

97

Chapter 11. Defining a first Optimization Problem The Geneva Library Collection

19 / / go & " ea " ;
20
21 / / Perform the ac tua l o p t i m i z a t i o n
22 boost : : shared_ptr <GParabolo id Ind iv idual2D >
23 b e s t I n d i v i d u a l _ p t r = go . opt imize <GParabolo idInd iv idual2D > () ;
24
25 / / Do something wi th the best r e s u l t
26 }

Geneva is a comprehensive toolkit, with many optimization algorithms and different execution modes.
For the highest flexibility, you would need to access all of Geneva’s classes directly.

In many cases, however, and particularly when trying to combine different optimization algo-
rithms, the Go2 class provides a useful interface to the most important functionality. We will
use it in this example.

In line 3 of listing 11.9, the Go2 constructor is called with the command line parameters, as well as the
name of its configuration file in JSON13 format. The constructor will then parse any available command
line parameters for applicable options and read in the configuration options from its configuration file.

Note that the application will terminate if the target directory (config, in this case) does not exist.
If the directory exists, but the requested configuration file does not exist, it will create a configuration
file with default values for you.

Next, in line 7, we check whether this application has been called in client mode, and if so, execute
the client loop. Client mode can be triggered by passing the switches -client -e 2 to the
application on the command line. In networked mode, which is triggered through the option -e 2,
Geneva applications may act as the server or one of usually many clients. If the option -client is
not specified, it is assumed that the executable acts as the server. For completeness, please note that
you would also have to specify a “Consumer” with a command line option like -c tcpc. This would
indicate that we want to run Geneva in networked mode, through Boost.Asio. Call the executable with
the option -help in order to see all available options.

Chapters 23 and 24 discuss the topic of parallelization and consumers in far more detail.

In line 14, an object of the GParaboloidIndividual2D class is created and added to the go
object. We could have added more than one here – all individuals we add here will serve as distinct
starting points for the optimization process. Note that we need to wrap the GParaboloidIn-
dividual2D class in a boost::shared_ptr<> in order to add it to the go object. This
convention helps Geneva to avoid memory leaks.

In Line 19, we could have added an evolutionary algorithm to the go object. Doing this, using the easy
notation go & "ea"; would force the go class to start every optimization run with an evolutionary
algorithm.

However, the line is commented out in listing 11.9. As a consequence, unless the user specifies one or
more optimization algorithms on the command line, the default algorithm will be used. This happens
to be an evolutionary algorithm again. All configuration options of the evolutionary algorithm are read
from a configuration file in this case, but could of course also be specified through member functions.

13JSON == Java Script Object Notation

98

The Geneva Library Collection 11.6. A note about performance

Note that we could have added other algorithms using the &-notation as well, and that we could
also have added explicit objects instead of the mnemomic "ea". As an example, we could have
simply added a multi-threaded evolutionary algorithm object, followed by a networked swarm object.
In this case, multi-threaded optimization with an evolutionary algorithm could have been followed by
networked optimization with a swarm algorithm. The best solution found by preceding algorithms is
then used as the starting point for the following optimization algorithm.

Finally, in line 22, we start the actual optimization cycle and extract the best individual for later inspec-
tion.

11.6. A note about performance

You might by now have gotten the impression that some of the techniques being used here could have
a negative impact on Geneva’s performance (in particular the extensive use of smart pointers and type
conversions).

However, please keep in mind that the focus of the library is on problems with particularly complex
and computationally expensive evaluation functions.

Thus a choice has been made in the design of the library to rate stability and consistency of the core
library higher than cutting-edge efficiency. This decision does not affect the execution of evaluation
functions for candidate solutions. As, in the chosen deployment scenario, the evaluation of candidate
solutions will account for the most of the execution time, the effect of our decision on the performance
of the optimization run should be minimal.

Through the chosen design, however, it is far less likely that the optimization crashes than if the core
library would have been written solely with bare pointers instead of smart pointers and without any
conversions.

11.7. What we didn’t say . . .

This chapter has covered the basics. More realistic examples will require further functionality, such
as:

• Some optimization algorithms, like Evolutionary Strategies, associate “adaptors” with each pa-
rameter. In this chapter, however, we have just used the default settings, which will not be best
for all problems.

• When you perform more complex optimizations, you will almost certainly want to read in exter-
nal configuration information for your individual. This could be related to the settings of your
adaptors, or it could be necessary to access an external data set, whose name needs to be
provided to the individual. Geneva has an entire framework for parsing configuration files.

• Geneva allows you to let entire collections of candidate solutions compete against each other.
This allows you to explore different areas of the parameter space in parallel.

99

Chapter 11. Defining a first Optimization Problem The Geneva Library Collection

These and many more topics will be discussed in chapter 26.

100

Chapter 12.

Class Hierarchies and Principles

At the time of writing, Geneva comprises three different class hierarchies, dealing with random number
generation, communication and optimization1. The focus of this chapter will be on the optimization
hierarchy, as the user will rarely have to deal with the other two hierarchies2.

As a prelude to a description of common usage patterns, this chapter introduces the core class struc-
ture of the optimization library. The “outer” (user-visible) parts of the class tree will be discussed in the
following chapters.

Key points: (1) Geneva comprises three class hierarchies, dealing with random number generation, communi-
cation and optimization (2) Additional utility classes are used throughout the hierarchy (3) The user will usually
only have to deal with the optimization hierarchy (4) The optimization hierarchy is rooted in the GObject class,
from which several branches emanate (5) The most important branches deal with optimisation algorithms and the
definition / codification of the actual optimization problem (6) Other branches include adaptors (mainly used in Evo-
lutionary Algorithms), monitor classes (used to monitor the progress of an optimization run), “trait” classes holding
information specific to a given optimization algorithm (to be stored in the “individuals”) and parameter definitions.

12.1. Core Optimization Classes

Figure 12.1 shows the innermost classes of the optimization-related class hierarchy. All classes in this
hierarchy derive directly or indirectly from the GObject class.

All functionality that is directly related to optimization algorithms is available through thelibgeneva
library (named after the entire library collection) and associated header files3.

1. . . plus a set of “common” utility classes
2. . . beyond a standard call from main(), which will usually stay the same
3Note that also a library of individuals for demonstration-, test- and profiling-purposes exists, called geneva-individuals

101

Chapter 12. Class Hierarchies and Principles The Geneva Library Collection

Figure 12.1.: Geneva’s optimization-related class hierarchy is rooted in the GObject class. The
figure shows the innermost classes only.

12.1.1. The GObject Class

GObject serves as the largest common denominator of all optimization related classes. The need
for this setup arises from the fact that, from Geneva’s perspective, in many cases the actual type of an
object is not clear. As an important example, Geneva uses the STL vector interface in many places.
Parameter sets, as discussed in section 12.1.5, allow to freely mix different parameter types. This
gives a user a lot of freedom in describing his optimization problems. Loading and cloning of objects –
which is a frequent operation in optimization algorithms – thus needs to happen through base pointers.
GObject provides the necessary infrastructure to convert to the actual target type, and provides
many convenience functions needed for (de-)serialization.

12.1.2. Parameter Definition with the GParameterBase class

All predefined parameter types of the Geneva library derive from the GParameterBase class.
There are several important operations associated with this class-type4. In particular, GParame-
terBase objects can be:

4Note that in most cases, GParameterBase only defines the interface, and that the actual implementation is up to
derived classes (i.e. the actual parameter types)

102

The Geneva Library Collection 12.1. Core Optimization Classes

• adapted. In the case of Evolutionary Algorithms and Simulated Annealing (compare chapters
4 and 5), a common motor for optimization is to associate adaptors with each parameter object.
Not surprisingly, the adapt() call of GParameterBase triggers adaption.

• randomly initialized. The randomInit() call triggers a type dependent initialization with
a random value.

There are two kinds of GParameterBase-derivatives. Individual parameter objects encapsulate
a single value. Collections encapsulate a set of parameter values of identical type. Note that there is
also an object holding a collection of GParameterBase objects, so you can actually build “trees”
of parameter objects. Further details are discussed in chapter 13.

12.1.3. Adaptors

Adaptors are associated with5 GParameterBase objects and are used in the context of Evolution-
ary Algorithms and Simulated Annealing. Their most important operation is the adapt(T& val)
call. T is a template parameter, i.e. a placeholder for a specific type. The function is implemented in
the GAdaptorT class.

Note the trailing “T” in the class name. It indicates that this is a template class6. Derived classes
specify both the type of parameter to be adapted, and the operations to be performed. Adaptions can
be applied both to individual values or to collections of values of the same type.

adapt(T& val) encapsulates further functionality, such as the ability to define a likelihood for
the adaption to be actually carried out.

Users will rarely need to define their own adaptors, as Geneva comes with a comprehensive collection.

12.1.4. Individuals

Individuals encapsulate the entity to be optimized by a given optimization algorithm. The two most
important operations for individuals, implemented in the GOptimizableEntity class, are

• fitness() : There are actually two operations triggered by this call. Whenever the para-
meter values of an individual change, a dirty flag must be set. This happens automatically for
all predefined parameter modifications in Geneva7. Thus, the function will first check a “dirty
flag” in order to determine, whether re-calculation of an individual’s value is needed. Where
this is not the case, it will return the last known fitness value. If the dirty flag is set, it will call a
user-defined evaluation function. This rather complex setup happens, because the evaluation
of a parameter set may be very costly – in extreme cases it might well take several hours. So
we need to male sure that the actual calculation only happens when really needed.

• adapt() : This call will trigger adaption of all parameter objects, as discussed in sections
12.1.2 and 12.1.3.

5read: stored in a derivative of the GParameterBase class . . .
6Chapter 29 discusses this and other coding conventions
7Note that, if a user chooses to manually modify the parameters, he must take care that re-evaluation is triggered

103

Chapter 12. Class Hierarchies and Principles The Geneva Library Collection

There are two main types of individuals in Geneva: Most importantly, the classes encapsulating the
actual problem to be optimized (implemented through the GParameterSet class), plus the opti-
mization algorithms themselves.

The fact that optimization algorithms implement the GOptimizableEntity interface means
that it becomes possible to perform meta-optimization. This could simply involve the evolution of
the configuration parameters of an algorithm, or could happen in the form of Multi-Populations, as
discussed in section 4.5. Although this hasn’t been tried yet with the Geneva library, it should even
be possible to let different optimization algorithms compete against each other. Note that, within
Geneva, only Evolutionary Algorithms and Simulated Annealing can be used as the host for this type
of meta-optimization,

12.1.5. Parameter Sets

The GParameterSet class amalgamates the parameter definitions underlying a given optimiza-
tion problem with the calculation of a parameter set’s fitness. It will likely be this class that users
will be involved with mostly and that will consume most of their programming effort.

A GParameterSet can be likened to a std::vector<GParameterBase>, i.e. a col-
lection of GParameterBase objects, that can be modified with the usual STL algorithms. The
class gains the ability to act like a std::vector by means of derivation from a template class,
GMutableSetT<T>, whose template parameter is set to GParameterBase.

The user needs to define the fitness calculation in a derived class by overloading the double
fitnessCalculation() function.

As an example, in chapter 11 we have derived GParaboloidIndividual2D from GParam-
eterSet. In this new class, we have defined how a given parameter set can be translated into a
fitness. In this case this happened by calculating the square of all floating point parameters and
summing them up. We have also added parameter objects in the class’s constructor.

Inside of fitnessCalculation() the reverse operation was performed and the individual’s
floating point parameters were extracted with thestreamline(std::vector<par_type>&
parVec) function. For a given parameter type, it fills parVec with all parameter values of this
type stored in the object.

Note that, as a derivative of the GOptimizableEntity class, GParameterSets can also
trigger adaption of parameters (compare section 12.1.4).

Several of the following chapters will illustrate the usage of the GParameterSet class and its
derivatives.

12.1.6. Personality Traits

Individuals are generally independent from the optimization algorithm used to modify them. However,
optimization algorithms might need to associate further information with an individual. One example
is the information about the best parameter set found so far in swarm algorithms. The easiest way

104

The Geneva Library Collection 12.1. Core Optimization Classes

is to store this information in the individual itself. The GPersonalityTraits class (and the
derivatives available for each optimization algorithm) help to achieve this goal.

Note that the user will very rarely have to deal directly with this branch of the Geneva class tree, as
it is mainly intended for internal use. When writing information providers8, though, it may become
necessary to access this object type directly. Chapter 25 and section 12.1.8 have further details on
information providers.

12.1.7. Optimization Algorithms

The optimization algorithms implemented in the Geneva library (and likely the majority of all optimiza-
tion algorithms in existence) share a common structure. After some sort of initialization, a main loop
will execute a cycle logic, until a halt criterion is reached. After the execution of finalization code, the
user can extract the best individual(s) found. Also, all optimization algorithms implemented in Geneva
deal with a collection of individuals which, for want of a better word, will be called a population here.

One reason for choosing a population over individual candidate solutions is that the Geneva library
is targeted at parallel and networked execution. As a consequence, when executed in a suitable
environment, evaluation of multiple parameter sets in parallel does not come at additional cost (i.e.,
execution takes – roughly – equally long)9.

All of this base functionality is implemented in the GOptimizationAlgorithmT class. The
actual algorithms then need to overload some of this class’es functions, with cycleLogic()
being the obvious, most important example. GOptimizationAlgorithmT also implementes
several common halt criteria, such as a limit to the maximum number of iterations, the maximum
number of iterations without improvement (a “stall counter”) or the maximum amount of time allowed
to elapse during an optimization. Listing 12.1 further illustrates this situation.

Listing 12.1: All optimization algorithms implemented in the Geneva library share a common work flow,
which is implemented in the GOptimizationAlgorithmT class

1
2 do {
3 cyc leLog ic () ; / / Perform the work s p e c i f i c to t h i s a lgo r i thm
4 i n f o r m a t i o n R e t r i e v a l () ; / / E x t r a c t i o n o f i n f o rma t i on about the o p t i m i z a t i o n
5 i t e r a t i o n ++; / / Increment the i t e r a t i o n counter
6 }
7 while (! h a l t ()) ; / / Terminate o p t i m i z a t i o n when a h a l t c r i t e r i o n t r i g g e r s
8
9 f i n a l i z e () ; / / Perform any necessary f i n a l i z a t i o n work

10 r e t u r n B e s t I n d i v i d u a l () ; / / Return the best i n d i v i d u a l found

The algorithms differ slightly in what they may modify, though. Most optimization algorithms in Geneva
derive directly or indirectly from GOptimizationAlgorithmT<GParameterSet>, while clas-

8Objects that emit information on the progress of the optimization – this is an advanced topic
9As an example, Simulated Annealing is usually implemented using a single “child”, but has been amended in the Geneva

library to act on an entire population of candidate solutions. See chapter 5 for further details.

105

Chapter 12. Class Hierarchies and Principles The Geneva Library Collection

ses meant to act on optimization algorithms rather than parameter sets (i.e. perform meta-optimization)
will derive from GOptimizationAlgorithmT<GOptimizableEntitity>

All algorithms implemented in Geneva come in three types that derive from a common base class. In
the case of Evolutionary Algorithms, GSerialEA allows serial execution only. It is derived from
GBaseEA Then there is a class that performs optimization in parallel, using a configurable or auto-
detected number of threads (e.g. GMultiThreadedEA and GMultiThreadedSwarm,
GMultiThreadedGD for the other algorithms). Finally, there is a class which interacts with a
broker infrastructure (GBrokerEA is one example). The broker infrastructure is discussed in detail
in chapter 32 and also briefly in section 12.2. Its purpose is to communicate with different types of
(likely networked) entities that perform the parallel tasks defined by an optimization algorithm.

Communication with a GPGPU through OpenCL has also been implemented through the broker (but
has so far not been released as part of the main library – ask us for details, if you are interested).

As time permits, it is also intended to integrate an MPI10-comsumer into the broker infrastructure.

12.1.8. Optimization Monitors

During the course of the optimization cycle it is necessary to emit information. E.g., a user might want
to terminate execution early, if either no sufficient progress can be observed or a sufficient quality has
been achieved already.

The optimization algorithms implemented in Geneva have predefined, so called “optimization moni-
tors”. At the very least, an optimization monitor should be able to emit the best fitness found in each
iteration.

There is a very diverse set of information that can be extracted from the optimization classes, and this
information differs from algorithm to algorithm. Hence Geneva needs to enable users to define their
own information schemes.

For this purpose, GOptimizationAlgorithmT contains an embedded class which is, not
surprisingly, called GOptimizationMonitorT. It has a predefined API, and its information-
providers are called in each iteration. The actual implementations of a given algorithm derive their
own classes from GOptimizationMonitorT and overload some of this functionality.

Users wishing to emit information in their own, custom format then just need to derive their own monitor
from the existing hierarchy and supply it to the optimization algorithm. Note again that this class will
be specific to this algorithm and will likely be unusable with the others.

Note that writing a good monitor is an advanced topic. It is not necessary to provide your own
optimization monitor for your first steps with Geneva.

There is also a facility called Pluggable Optimization Monitor, which allows to quickly enable the ex-
traction of some frequently used information. Geneva comes with a predefined set of information
providers.

Further information on optimization monitors can be found in chapter 25.

10Message Passing Interface

106

The Geneva Library Collection 12.2. Communication and Brokerage

12.2. Communication and Brokerage

Geneva is targeted at particularly complex optimization problems, with long-lasting evaluation func-
tions. This makes it useful to parallelize Geneva mainly on the level of the evaluation of parameter
sets11. If done right, then an individual’s data will mainly consist of the parameter sets, plus some
data needed for serialization purposes12.

The optimization algorithms of the “broker type” (compare section 12.1.7) then hand a smart pointer13

to the individuals to be evaluated to a broker. The broker accepts simultaneous connections from
different providers of work items, through thread-safe queues. Work items are marked with an id
so that the object they have originated from can be identified later. Items to be processed are then
extracted from the queues in a round-robin fashion and handed to a “consumer” object for further
processing.

Different consumer implementations exist. The most important implementation at the time of writ-
ing accepts connections from worker nodes, through network connections implemented with the
Boost.Asio library. An implementation of a consumer using the Message Passing Interface would
be relatively easy, using the abstractions provided by Geneva. Another consumer exists which simply
hands the work item to processing threads on the same machine. It is mainly meant for stress-testing
of the broker infrastructure.

Processed items are then handed back to the broker as soon as they come in. The broker makes the
items available to the optimization algorithms, so they can be re-integrated into their data structures.

The communication- and brokerage-code is available through Geneva’s courtier library and associated
header files.

12.3. Random Number Creation

Many optimization algorithms require large quantities of random numbers to be readily available. How-
ever, in a potentially multi-threaded environment, creation of different random-number strains at the
call site would require synchronisation of the seeding procedure, so different random number se-
quences are not (significantly) correlated. Also, with potentially hundreds of thousands of objects
requiring random numbers (Geneva has been tested with up to 100000 parameter objects as part of
an individual), the memory overhead of multiple generators would be immense.

And optimization algorithms work in cycles, with periods of high activity followed by short idle times.
Performance would thus be hampered, if random numbers would be created only at the time they are
needed.

Geneva thus centralizes the creation of random numbers inside of each executable, through a “random

11Evolutionary Algorithms also perform mutation in parallel in Geneva.
12On a side note this means that it is advisable to load external data needed for the fitness calculation either when the

fitness function is called or, depending on the amount of data, once for the entire program duration. This can be done
e.g. with a singleton. Geneva provides an infrastructure for this purpose.

13A boost::shared_ptr<GParameterSet>, really

107

Chapter 12. Class Hierarchies and Principles The Geneva Library Collection

number factory”14.

Each consumer of random numbers has a random number proxy that has an array of “raw” random
numbers (double numbers in the range [0,1[). Retrieving a new double random number thus simply
requires incrementation of a counter. When the buffer has run empty, it is discarded and a new buffer
is retrieved from the factory. The proxy has means to create other types of random numbers from
this raw material, such as “integer” numbers or double random numbers with a gaussian distribution.
Usage of the random number proxies is transparent to the consumer. To them the proxies look like
ordinary random number generators.

The random number factory continuously fills buffers with “raw” random number packages from a
number of threads. These threads will block when the buffers have reached their maximum capacity,
and will then not consume CPU time. When random number packages are again extracted from the
buffers by the random proxies, the threads resume operation, until the buffer is again full.

The random factory and the proxies are implemented in the libhap library inside of the Geneva library
collection.

14In a networked environment there will be more than one Geneva executable running at the same time: one server and
a number of workers. Each has its own random number factory.

108

Chapter 13.

Parameter Types

This chapter introduces the predefined parameter types of the Geneva library. These are the building
blocks from which individuals can be assembled. As this discussion can be a bit boring, we suggest
that you read section 13.1 now, and look at section 13.5, when you search for a suitable parameter
object fitting your optimization problem.

Key points: (1) Parameter types can be categorized into single parameters and collections of parameters of
the same type (2) Geneva supports boolean, integer and floating point parameters of different sizes (3) Geneva
supports “meta collections”, where GParameterBase objects are stored in a collection. This allows to create
parameter hierarchies

13.1. Overview

Geneva’s vanilla parameter types are built around three basic C++ types: bool, floating point and
integer values. On the floating point side, Geneva’s architecture generally allows double types.
Until the necessity arises, Geneva currently does not support single precision Ifloat and long
double paramters. One reason for this is that long double is not universally supported on
all platforms (or, to be more exact, not all supported platforms support all required forms of long
double math functions). float on the other hand seems to be too limited for most scientific
and engineering use-cases, and most relevant hardware architectures support double parameters
natively.

Note that GPGPU-hardware will currently show much better performance forfloat types1. Howewer,
Geneva will never run directly on the GPU (or when it does, it will be so advanced that double will
be “en par” with float), but will rather “talk” to the GPU through a layer such as OpenCL. As
double-values in the context of optimization will usually be used for their higher precision rather than
their higher value range, their values can be easily transformed to float when needed.

1GPU-hardware with acceptable double precision performance is already available, but still quite expensive.

109

Chapter 13. Parameter Types The Geneva Library Collection

Integer values are expressed through Boost’s cstdint framework in Geneva. In C++, the size
of the standard integer types (e.g. int or long) is platform dependent. This makes it diffi-
cult to write platform-independent code. In order to solve this dilemma, Boost provides types like
boost::int32_t (a 32 bit signed integer), boost::int64_t (64 bit signed integer) or
boost::uint64_t (the unsigned version of boost::int64_t), which are then mapped
to the native types of a given platform (or are left undefined, if they do not exist). Geneva currently
supports boost::int32_t parameters only, but can be easily extended to cover other signed
integer types as well, should the need arise. Unsigned integer types can be emulated by applying a
constraint to the parameter type – see section 13.1.2.

13.1.1. Collections and Single Parameters

Parameter classes come in two flavours in Geneva: They can either contain a single value, or a col-
lection of values. Collections can be treated almost the same as a std::vector<par_type>
holding variables of the desired type.

Where adaptors need to be applied to a variable (like in the case of Evolutionary Strategies), collec-
tions apply the same adaptor to the entire collection2. This is significant, as adaptors may vary their
internal configuration as part of the optimization procedure, and these modifications will then apply to
the entire collection, instead of single parameters.

Parameter types holding only a single variable always have their own adaptor, which can individually
and independently change its internal setup as necessary.

13.1.2. Constrained Types

It is quite often necessary to apply constraints to parameter types, so that they can only assume values
in a given range. Geneva allows to constrain both parameter types based on floating point and integer
variables. Note that an unsigned parameter type can be emulated by applying a lower constraint of 0.

The discussion of the GConstrainedDoubleObject class in section 13.5 gives an example
of how constrained values are achieved in Geneva.

13.1.3. Naming Schemes

The naming of parameter types follows a predefined scheme:

• As is common in Geneva, all class names start with an uppercase G.

• If the parameter type is constrained, the next word of the class name is Constrained.

• Next comes the underlying base type, such as Double (uppercase) or Int32 (referring to bo-
ost::int32_t).

2. . . with the exception of collections that carry parameter objects instead of individual “base” values. One example is the
GParameterObjectCollection, discussed in section 13.5.

110

The Geneva Library Collection 13.2. Value Access

• If we are dealing with a single parameter value, the last word of the class name is Object.

• If we are dealing with a collection of values instead, the last word is Collection.

• If we are dealing with a collection of parameter objects, the last word is ObjectCollec-
tion.

Section 13.5 lists all parameter types that are currently implemented in Geneva. We recommend to
read it when you are looking for a specific parameter type. Given the above naming scheme, there is
probably no need to read it immediately.

Figure 15.1 on page 146 further illustrates how parameter objects can be integrated into an individual.

13.2. Value Access

Naturally, the most important user-visible operation of parameter types is the ability to access their
values. The access is handled differently depending on whether the parameter type encapsulates a
single variables (case “A”) or variable collections (case “B”).

13.2.1. Access to Individual Parameters

Retrieval of values in case A is possible through the T GParameterT::value() const
function, where T is a template parameter. GParameterT is the base class of all individual param-
eter types. Reading access is also possible though the operator(). Note that it is not possible
to directly modify the value through these functions.

However, the void GParameterT::setValue(const T&) function does allow modi-
fication of a parameter’s value. operator=(const T&) provides a convenient alternative to
setValue().

Listing 13.1 illustrates the procedure on the example of the GDoubleObject parameter, which
encapsulates a single, unconstrained double variable.

Listing 13.1: Access to the values of individual parameters

1 / / [. . .]
2 GDoubleObject d ;
3
4 d . setValue (1 . 2 3 4) ;
5 asser t (d . value () == 1 .234) ;
6 asser t (d () == 1 .234) ;
7
8 d = 2.468;
9 asser t (d . value () == 2 .468) ;

10 asser t (d () == 2 .468) ;
11
12 / / [. . .]

111

Chapter 13. Parameter Types The Geneva Library Collection

13.2.2. Access to Values in Parameter-Collections

Throughout the Geneva library, collections of variables and objects use the std::vector<> in-
terface. Still, two different situations need to be distinguished, as in Geneva parameter collections
may either hold parameter objects or individual POD3 values (such as double, bool, . . .).

Collections of POD Values

For all practical purposes, access to POD values in a Geneva collection is not different from access in
an ordinary std::vector<>. Listing 13.2 illustrates this on the example of a GDoubleCol-
lection, i.e. a collection of unconstrained double values.

Listing 13.2: Access to POD values in a collection

1 / / [. . .]
2 GDoubleCol lect ion dc ;
3
4 dc . push_back (1 .) ;
5 dc . push_back (2 .) ;
6 dc . push_back (3 .) ;
7
8 GDoubleCol lect ion : : i t e r a t o r i t ;
9 for (i t =dc . begin () ; i t != dc . end () ; ++ i t) {

10 std : : cout << * i t << s td : : endl ;
11 }
12
13 dc [0] = 4 ;
14 std : : cout << dc . a t (0) << std : : endl ;
15
16 dc . c l ea r () ;
17 std : : cout << dc . s ize () << std : : endl ;
18 / / [. . .]

All properties of POD collections in Geneva are derived from the GStdSimpleVectorInter-
face class, which is itself a wrapper around a std:vector<T>4.

Collections of Parameter Objects

Access to collections of parameter objects differs slightly from POD data, as the value being accessed
is a smart pointer to a parameter object. One important consequence is that you can’t just ask for the
value at a given position. Rather, you need to go through the parameter object’s interface functions.

3Plain Old Data
4With this design, we want to avoid direct derivation from std:vector<T>, as it does not provide a virtual destructor.

Derivation from this class is thus commonly considered bad style and can even lead to errors (such as in cases, where
the class hierarchy is accessed through a vector base class).

112

The Geneva Library Collection 13.3. Access to Value- and Initialization-Boundaries

Listing 13.3 illustrates this on the example of a GDoubleObjectCollection, i.e. a collection
of objects, each encapsulating individual double variables.

Listing 13.3: Sample access patterns to parameter objects in a collection

1
2 / / [. . .]
3 GDoubleObjectCol lect ion doc ;
4
5 doc . push_back (boost : : shared_ptr <GDoubleObject >(new GDoubleObject (1 .))) ;
6 doc . push_back (boost : : shared_ptr <GDoubleObject >(new GDoubleObject (2 .))) ;
7 doc . push_back (boost : : shared_ptr <GDoubleObject >(new GDoubleObject (3 .))) ;
8
9 GDoubleObjectCol lect ion : : i t e r a t o r i t ;

10 for (i t =doc . begin () ; i t != doc . end () ; ++ i t) {
11 / / Note : (* i t) r e tu rns a boost : : shared_ptr <GDoubleObject>
12 std : : cout << (* i t)−>value () << std : : endl ;
13 }
14
15 / / doc [0] and doc . a t (0) r e t u r n a boost : : shared_ptr <GDoubleObject >. Hence we need to
16 / / de−re ference t h i s p o i n t e r i n order to modify or access the ob jec t ’ s value .
17 * (doc [0]) = 4 ;
18 std : : cout << (doc . a t (0))−> value () << std : : endl ;
19
20 / / boost : : shared_ptr <> w i l l take care o f the d e s t r u c t i o n o f a l l o c a t e d ob jec ts
21 doc . c l ea r () ;
22 std : : cout << doc . s ize () << std : : endl ;
23 / / [. . .]

A special purpose collection ist the GParameterObjectCollection class, which stores
the parameter object base class GParameterBase. Hence, in order to access the data stored in
the collection, you will first need to convert the GParameterBase object to the most-derived type.
Geneva provides convenience functions for this purpose, particularly the member template GParam-
eterObjectCollection::at<parameter_type>(const std::size_t&) ,
which returns the object at a given position and converts it to the desired target type parame-
ter_type on the fly5.

13.3. Access to Value- and Initialization-Boundaries

It is naturally possible to specify and retrieve boundaries for constrained parameter types. However,
random initialization of unconstrained types also requires specification of boundaries, albeit only for
the initialization process. Both boundary types also play a role for example in swarm algorithms, where
particularly the initialization boundaries are interpreted as the “expected” value range. Some types –
particularly boolean parameter types – do not support constraints.

Specification of boundaries usually happens at construction time, retrieval happens either through the

5Note that, for this to work, you obviously need to know the target type.

113

Chapter 13. Parameter Types The Geneva Library Collection

getLowerBoundary() / getUpperBoundary() functions in the case of constrained
types or through getLowerInitBoundary() / getUpperInitBoundary() for un-
constrained types. Section 13.5 has code examples for each parameter type.

13.4. De-activation of Parameters

labelsec:DeactivationOfParameters It is possible to de-active parameters using the call GParame-
terBase::setAdaptionsInactive(), and re-activated using the call GParameter-
Base::setAdaptionsActive(). The current status of a parameter may be obtained using
the call GParameterBase::adaptionsActive(). All current optimization algorithms
will then take care not to modify “inactive” parameters. The one exception are parameter scans, as it
is assumed that, when a parameter is specified as a scan-target, its modification is indeed the desired
outcome.

See section 15.2.1 for a discussion on how to selectively extract only active, inactive or all parameters.

13.5. Summary of Parameter Types

The following list of parameter types will provide examples for each type. The general access patterns
have already been discussed in section 13.2, hence we will not comment the examples further here.

13.5.1. GDoubleObject

This parameter type holds a single, unconstrained double value. This might appear heavy-weight
compared to collections of double values. However, particularly in Evolutionary Algorithms, there are
many situations where it makes sense to apply separate mutations to each parameter. This might for
example be the case if the quality surface has a complicated structure in one dimension, but is smooth
in another. Listing 13.4 shows typical usage patterns for this parameter type.

Listing 13.4: Typical usage patterns of the GDoubleObject class
1 / /−−−
2 / / Cons t ruc t ion
3 GDoubleObject o1 ; / / De fau l t co ns t r uc t i on
4 GDoubleObject o2 (o1) ; / / Copy co ns t r uc t i on
5 GDoubleObject o3 (2 .) ; / / I n i t i a l i z a t i o n by value
6 GDoubleObject o4 (0 . , 2 .) ; / / Random i n i t i a l i z a t i o n i n a given range
7 / / Cons t ruc t ion and access f r e q u e n t l y happens through smart po in te r s
8 boost : : shared_ptr <GDoubleObject> p (new GDoubleObject (0 . , 2 .)) ;
9

10 / /−−−

114

The Geneva Library Collection 13.5. Summary of Parameter Types

Figure 13.1.: User-visible parameter-types (marked red) follow an intuitive naming scheme.

11 / / Assignment , value s e t t i n g and r e t r i e v a l
12 o1 = 1 . ; / / Assigning and s e t t i n g a value
13 o2 . setValue (2 .) ;
14 o4 = o1 ; / / Assignment o f another ob jec t
15 std : : cout << o4 . value () << std : : endl ; / / Value r e t r i e v a l
16
17 / /−−−
18 / / Boundaries
19 / / R e t r i e v a l o f lower i n i t boundary
20 std : : cout << o4 . getLowerIn i tBoundary () << std : : endl ;
21 / / R e t r i e v a l o f upper i n i t boundary
22 std : : cout << o4 . getUpper In i tBoundary () << std : : endl ;
23
24 / /−−−
25 / / Assignment o f an adaptor (needed f o r Evo lu t ion S t ra teg ies)
26 double sigma = 0 . 1 ; / / " step width " o f gauss mutat ion
27 double sigmaSigma = 0 . 8 ; / / adapt ion o f sigma
28 double minSigma = 0 . , maxSigma = 0 . 5 ; / / a l lowed value range of sigma
29 / / 5% p r o b a b i l i t y f o r the adapt ion o f t h i s ob jec t when adaptor i s c a l l e d
30 double adProb = 0 .05 ;
31 boost : : shared_ptr <GDoubleGaussAdaptor> gdga_ptr (
32 new GDoubleGaussAdaptor (
33 sigma , sigmaSigma , minSigma , maxSigma
34)
35) ;

115

Chapter 13. Parameter Types The Geneva Library Collection

Figure 13.2.: Constraints of floating point values are modelled as a mapping from an internal to a user-
visible value. This allows to apply modifications of the core value to an unconstrained
range, while presenting a constrained value to the user.

36 gdga_ptr−>s e t A d a p t i o n P r o b a b i l i t y (adProb) ;
37 p−>addAdaptor (gdga_ptr) ;
38 / /−−−

13.5.2. GConstrainedDoubleObject

This is a parameter type holding a single, constrained double value. Figure 13.2 shows the method that
was used to constrain the value. Geneva uses a mapping from an internal to a user-visible value. The
internal value is unconstrained, so that adaptors can be easily applied to the variable, without having
to take into account its boundaries. The external value alternates between its two outer boundaries.
Figure 13.3 shows the real mapping, as obtained from a GConstrainedDoubleObject by
setting the internal value and extracting the external value.

One might suspect that applying constraints to an externally visible value while modifying an internal
value using the gauss mutation (compare figure 4.2 and section 4.2.2) will severely distort the gaus-
sian, which might degrade the performance particularly of Evolution Strategies. Figure 14.2 shows
the internal values of a number of collections of gaussian distributed random numbers with different
mean value, as well the externally visible values. It is evident that there is very little distortion close to
the outer boundaries of the allowed value range.

116

The Geneva Library Collection 13.5. Summary of Parameter Types

Figure 13.3.: This picture shows the real mapping, as achieved for different constraints using the
method illustrated in figure 13.2.

Both boundaries of this object are inclusive, i.e., the GConstrainedDoubleObject may
assume both boundary-values6. If you need an “open” upper boundary, i.e., the object may never as-
sume the value of the upper boundary, you need to provide a suitable value. This is relatively easy us-
ing the Boost-functionboost::math::float_prior<fp_type>(x), wherefp_type
will usually represent a double parameter, and x is the upper boundary. In order to create a
GConstrainedDoubleObject with a closed lower boundary 0, an open upper boundary
2 and a randomly initialized value, one would call the constructor GConstrainedDoubleOb-
ject(0.,float_prior(2.))7.

Listing 13.5 shows typical usage patterns for this parameter type. Note that we can add the same
adaptor as in listing 13.4. However, we do not show the construction of the adaptor here in order to
keep the description short.

6Former versions of Geneva used to silently deduct the smallest representable double value from the upper boundary.
However, this has led to confusion in a number of places and has made the code overly complex.

7C++ can deduct the template type from the function argument. We also assume that the namespace boost::math
has been made known to the compiler using a using namespace command.

117

Chapter 13. Parameter Types The Geneva Library Collection

Listing 13.5: Typical usage patterns of the GConstrainedDoubleObject class

1 / /−−−
2 / / Cons t ruc t ion
3 GConstrainedDoubleObject o1 ; / / De fau l t co ns t r uc t i on
4 GConstrainedDoubleObject o2 (o1) ; / / Copy co ns t r uc t i on
5 GConstrainedDoubleObject o3 (2 .) ; / / I n i t i a l i z a t i o n by value
6 GConstrainedDoubleObject o4 (0 . , 2 .) ; / / I n i t i a l i z a t i o n o f value boundaries
7 / / I n i t i a l i z a t i o n wi th value and value boundaries
8 GConstrainedDoubleObject o5 (1 . , 0 . , 2 .) ;
9 / / Cons t ruc t ion and access f r e q u e n t l y happens through smart po in te r s

10 / / Note t h a t both boundaries s p e c i f i e d i n the cons t ruc to r are i n c l u s i v e
11 boost : : shared_ptr <GConstrainedDoubleObject > p (
12 new GConstrainedDoubleObject (0 . , 2 .)
13) ;
14
15 / /−−−
16 / / Assignment , value s e t t i n g and r e t r i e v a l
17 o1 = 1 . ; / / Assigning a value
18 o2 . setValue (1 . 5) ;
19 o5 = o1 ; / / Assignment o f another ob jec t
20 std : : cout << o4 . value () << " " << o5 . value () << std : : endl ; / / Value r e t r i e v a l
21
22 / /−−−
23 / / Boundaries
24 / / R e t r i e v a l o f lower value boundary
25 std : : cout << o4 . getLowerBoundary () << std : : endl ;
26 / / R e t r i e v a l o f upper value boundary
27 std : : cout << o4 . getUpperBoundary () << std : : endl ;
28
29 / /−−−
30 / / Assignment o f an adaptor
31 / / (setup o f adaptor not shown here ; i d e n t i c a l to GDoubleObject)
32 p−>addAdaptor (gdga_ptr) ;
33 / /−−−

13.5.3. GDoubleObjectCollection

This is a collection of GDoubleObject objects. Each of them may carry its own adaptor. Using
this collection makes sense if you want to avoid repeated casts.

No adaptor can be assigned to the collection itself, rather you need to add adaptors to the GDou-
bleObject objects before adding them to the collection. The class has a std::vector-
<boost::shared_ptr<GDoubleObject> > interface, so access happens in the same
way as is common for the Standard Template Library STL and throughout all of Geneva. Listing 13.6
shows typical usage patterns of this class.

Listing 13.6: Typical usage patterns of the GDoubleObjectCollection class

1 / /−−−

118

The Geneva Library Collection 13.5. Summary of Parameter Types

2 / / Cons t ruc t ion
3 GDoubleObjectCol lect ion c1 ; / / De fau l t cons t r uc to r
4 GDoubleObjectCol lect ion c2 (c1) ; / / Copy co ns t r uc t i on
5 / / Copy c o n s t r uc t i on i n s i d e o f smart p o i n t e r
6 / / Note : Copy c ons t r uc t i on w i l l c reate deep copies
7 / / o f a l l ob jec ts s tored i n c1
8 boost : : shared_ptr <GDoubleObjectCol lect ion > p_c3 (
9 new GDoubleObjectCol lect ion (c1)

10) ;
11
12 / /−−−
13 / / F i l l i n g w i th ob jec ts
14 for (s td : : s i z e _ t i =0; i <10; i ++) {
15 / / Create a smart p o i n t e r wrapping a GDoubleObject
16 boost : : shared_ptr <GDoubleObject> p (new GDoubleObject ()) ;
17 / / Conf igure GDoubleObject as requ i red . E . g . , add adaptors
18 / / . . .
19 / / Add to the c o l l e c t i o n
20 c1 . push_back (p) ;
21 }
22
23 / / Note : No adaptor i s added to the c o l l e c t i o n i t s e l f , on ly
24 / / to the ob jec ts conta ined i n i t .
25
26 / /−−−
27 / / Assignment through opera tor= . Note : This w i l l c reate
28 / / deep copies o f a l l ob jec ts s tored i n c1
29 c2 = c1 ;
30 *p_c3 = c1 ;
31 / /−−−
32 / / Access to parameter ob jec ts i n the c o l l e c t i o n
33 for (s td : : s i z e _ t i =0; i <10; i ++) {
34 std : : cout << p_c3−>at (i)−>value () << std : : endl ;
35 std : : cout << c1 [i]−>value () << std : : endl ;
36 }
37
38 / / Note : The i t e r a t o r po in t s to a smart po in te r , so i n order to
39 / / c a l l a f u n c t i o n on the parameter ob jec ts we f i r s t need to
40 / / dereference the i t e r a t o r , then the smart p o i n t e r
41 GDoubleObjectCol lect ion : : i t e r a t o r i t ;
42 for (i t =c1 . begin () ; i t != c1 . end () ; ++ i t) {
43 std : : cout << (* i t)−>value () << std : : endl ;
44 }
45 / /−−−

13.5.4. GConstrainedDoubleObjectCollection

This is a collection of GConstrainedDoubleObject objects. Each of them may carry its
own adaptor. No adaptor can be assigned to the collection itself. The class has a std::vector-

119

Chapter 13. Parameter Types The Geneva Library Collection

<boost::shared_ptr<GConstrainedDoubleObject> > interface. Listing 13.7
shows typical usage patterns of this class.

Listing 13.7: Typical usage patterns of the GConstrainedDoubleObjectCollection class

1 / /−−−
2 / / Cons t ruc t ion
3 GConstra inedDoubleObjectCol lect ion c1 ; / / De fau l t cons t r uc to r
4 GConstra inedDoubleObjectCol lect ion c2 (c1) ; / / Copy cons t r uc t i on
5 / / Copy c o ns t r uc t i o n i n s i d e o f smart p o i n t e r . Note : Copy cons t r uc t i on w i l l
6 / / c rea te deep copies o f a l l ob jec ts s tored i n c1
7 boost : : shared_ptr <GConstra inedDoubleObjectCol lect ion > p_c3 (
8 new GConstra inedDoubleObjectCol lect ion (c1)
9) ;

10
11 / /−−−
12 / / F i l l i n g w i th ob jec ts
13 for (s td : : s i z e _ t i =0; i <10; i ++) {
14 / / Create a smart p o i n t e r wrapping a GDoubleObject
15 boost : : shared_ptr <GDoubleObject> p (new GDoubleObject ()) ;
16 / / Conf igure GDoubleObject as requ i red . E . g . , add adaptors , . . .
17 / / Add to the c o l l e c t i o n
18 c1 . push_back (p) ;
19 }
20
21 / / Note : No adaptor i s added to the c o l l e c t i o n i t s e l f , on ly
22 / / to the ob jec ts conta ined i n i t .
23 / /−−−
24 / / Assignment through opera tor= . Note : This w i l l c reate
25 / / deep copies o f a l l ob jec ts s tored i n c1
26 c2 = c1 ;
27 *p_c3 = c1 ;
28 / /−−−
29 / / Access to parameter ob jec ts i n the c o l l e c t i o n
30 for (s td : : s i z e _ t i =0; i <10; i ++) {
31 std : : cout << p_c3−>at (i)−>value () << std : : endl ;
32 std : : cout << c1 [i]−>value () << std : : endl ;
33 }
34
35 / / Note : The i t e r a t o r po in t s to a smart po in te r , so i n order to
36 / / c a l l a f u n c t i o n on the parameter ob jec ts we f i r s t need to
37 / / dereference the i t e r a t o r , then the smart p o i n t e r
38 GConstra inedDoubleObjectCol lect ion : : i t e r a t o r i t ;
39 for (i t =c1 . begin () ; i t != c1 . end () ; ++ i t) {
40 std : : cout << (* i t)−>value () << std : : endl ;
41 }
42 / /−−−

120

The Geneva Library Collection 13.5. Summary of Parameter Types

13.5.5. GDoubleCollection

This is a collection of unconstrained double values (i.e. C++ double types). A single adaptor is
assigned to the collection and applied to all values contained in it. With few restrictions, the collection
has a std::vector<double> interface. Listing 13.8 shows typical usage patterns.

Listing 13.8: Typical usage patterns of the GDoubleCollection class
1 / /−−−
2 / / Cons t ruc t ion
3 GDoubleCol lect ion c1 ; / / De fau l t cons t r uc t i on
4 GDoubleCol lect ion c2 (c1) ; / / Copy cons t r uc t i on
5 / / Copy c o n s t r uc t i on i n s i d e o f smart p o i n t e r
6 boost : : shared_ptr <GDoubleCol lect ion > p_c3 (new GDoubleCol lect ion (c1)) ;
7 / / 100 double values , randomly i n i t i a l i z e d i n the range [−3. ,3 [
8 GDoubleCol lect ion c4 (100 , −3. , 3 .) ;
9

10 / /−−−
11 / / F i l l i n g w i th ob jec ts
12 for (double d = 0 . ; d <100. ; d+=1.) {
13 c1 . push_back (d) ;
14 }
15 / /−−−
16 / / Adding an adaptor
17 double sigma = 0 . 1 ; / / " step width " o f gauss mutat ion
18 double sigmaSigma = 0 . 8 ; / / adapt ion o f sigma
19 double minSigma = 0 . , maxSigma = 0 . 5 ; / / a l lowed value range of sigma
20 / / 5% p r o b a b i l i t y f o r the adapt ion o f t h i s ob jec t when adaptor i s c a l l e d
21 double adProb = 0 .05 ;
22 boost : : shared_ptr <GDoubleGaussAdaptor> gdga_ptr (
23 new GDoubleGaussAdaptor (sigma , sigmaSigma , minSigma , maxSigma)
24) ;
25 gdga_ptr−>s e t A d a p t i o n P r o b a b i l i t y (adProb) ;
26 c1 . addAdaptor (gdga_ptr) ;
27
28 / /−−−
29 / / Assignment through opera tor= . Note : This w i l l c reate deep copies
30 c2=c1 ;
31 *p_c3 = c1 ;
32
33 / /−−−
34 / / Access to parameter ob jec ts i n the c o l l e c t i o n
35 for (s td : : s i z e _ t i =0; i <c1 . s ize () ; i ++) {
36 std : : cout << c1 [i] << std : : endl ;
37 std : : cout << c1 . a t (i) << std : : endl ;
38 }
39 GDoubleCol lect ion : : i t e r a t o r i t ;
40 for (i t =c1 . begin () ; i t != c1 . end () ; ++ i t) {
41 std : : cout << * i t << s td : : endl ;
42 }
43 / /−−−

121

Chapter 13. Parameter Types The Geneva Library Collection

13.5.6. GConstrainedDoubleCollection

This is a collection of constrained double values. All values have the same constraint, and a single
adaptor is assigned to all of them. Construction is only possible with constraints8. Both boundaries
supplioed to this class are closed, i.e., all variables stored in this class may assume the value of both
boundaries. See section 13.5.2 (GConstrainedDoubleObject) for a discussion on how to
achieve an open upper boundary, that will not be reached by the variable values.

Listing 13.9: Typical usage patterns of the GConstrainedDoubleCollection class

1 / /−−−
2 / / Cons t ruc t ion
3 / / I n i t i a l i z a t i o n wi th 100 v a r i a b l e s and c o n s t r a i n t [−10 , 10[
4 GConstra inedDoubleCol lect ion c1 (100 , −10, 2 0 0 .) ;
5 GConstra inedDoubleCol lect ion c2 (c1) ; / / Copy c ons t r u c t i on
6
7 / / Note −− we do not c u r r e n t l y f i l l i n a d d i t i o n a l data i tems . This
8 / / c lass i s not yet a t i t s f i n a l stage .
9

10 / /−−−
11 / / Adding an adaptor
12 double sigma = 0 . 1 ; / / " step width " o f gauss mutat ion
13 double sigmaSigma = 0 . 8 ; / / adapt ion o f sigma
14 double minSigma = 0 . , maxSigma = 0 . 5 ; / / a l lowed value range of sigma
15 / / 5% p r o b a b i l i t y f o r the adapt ion o f t h i s ob jec t when adaptor i s c a l l e d
16 double adProb = 0 .05 ;
17 boost : : shared_ptr <GDoubleGaussAdaptor> gdga_ptr (
18 new GDoubleGaussAdaptor (sigma , sigmaSigma , minSigma , maxSigma)
19) ;
20 gdga_ptr−>s e t A d a p t i o n P r o b a b i l i t y (adProb) ;
21 c1 . addAdaptor (gdga_ptr) ;
22
23 / /−−−
24 / / Assignment through opera tor= . Note : This w i l l a lso create
25 / / deep copies o f the adaptor
26 c2 = c1 ;
27
28 / /−−−
29 / / Access to parameter ob jec ts i n the c o l l e c t i o n
30 / / Note : We c u r r e n t l y recommend not to use the s u b s c r i p t and at ()
31 / / opera tors or i t e r a t o r s
32 for (s td : : s i z e _ t i =0; i <c1 . s ize () ; i ++) {
33 c1 . setValue (i , double (i)) ;
34 std : : cout << c1 . value (i) << std : : endl ;
35 }

8This class is not at its final stage, as it still allows modifications of its underlying data set that are not intended this way. As
an example, access to the individual parameter items should only happen through the value() and setValue()
functions, as a transformation takes place from an internal value to an externally visible value. Access through the
subscript- or (at())-operators wil give you the “raw” internal values only. Changes to the architecture of this class may
occur in the future. We recommend to limit usage of this class to the patterns described in listing 13.9 below.

122

The Geneva Library Collection 13.5. Summary of Parameter Types

36 / /−−−

13.5.7. GInt32Object

This parameter object holds a single integer value of typeboost::int32_t. Listing 13.10 shows
typical usage patterns of this class.

Listing 13.10: Typical usage patterns of the GInt32Object class
1 / /−−−
2 / / Cons t ruc t ion
3 GInt32Object o1 ; / / De fau l t co ns t r uc t i on
4 GInt32Object o2 (o1) ; / / Copy co ns t r uc t i on
5 GInt32Object o3 (2) ; / / I n i t i a l i z a t i o n by value
6 GInt32Object o4 (0 , 2) ; / / Random i n i t i a l i z a t i o n i n a given range
7 / / Cons t ruc t ion and access f r e q u e n t l y happens through smart po in te r s
8 boost : : shared_ptr <GInt32Object > p_o5 (new GInt32Object (0 , 2)) ;
9

10 / /−−−
11 / / Assignment , value s e t t i n g and r e t r i e v a l
12 o1 = 1; / / Assigning and s e t t i n g a value
13 o2 . setValue (2) ;
14 o4 = o1 ; / / Assignment o f another ob jec t
15 std : : cout << o4 . value () << std : : endl ; / / Value r e t r i e v a l
16
17 / /−−−
18 / / Boundaries
19 / / R e t r i e v a l o f lower i n i t boundary
20 std : : cout << o4 . getLowerIn i tBoundary () << std : : endl ;
21 / / R e t r i e v a l o f upper i n i t boundary
22 std : : cout << o4 . getUpper In i tBoundary () << std : : endl ;
23
24 / /−−−
25 / / Assignment o f an adaptor
26 boost : : shared_ptr <GInt32Fl ipAdaptor > i f a _ p t r (new GInt32Fl ipAdaptor ()) ;
27 i f a _ p t r −>s e t A d a p t i o n P r o b a b i l i t y (0 . 0 5) ; / / 5% p r o b a b i l i t y
28 p_o5−>addAdaptor (i f a _ p t r) ;
29 / /−−−

13.5.8. GConstrainedInt32Object

A parameter object holding a single boost::int32_t value, which has been assigned a lower
and upper boundary. Listing 13.11 shows typical usage patterns of this class.

Listing 13.11: Typical usage patterns of the GConstrainedInt32Object class
1 / /−−−
2 / / Cons t ruc t ion

123

Chapter 13. Parameter Types The Geneva Library Collection

3 GConstra inedInt32Object o1 ; / / De fau l t cons t r uc t i on
4 GConstra inedInt32Object o2 (o1) ; / / Copy cons t r uc t i on
5 GConstra inedInt32Object o3 (2) ; / / I n i t i a l i z a t i o n by value
6 / / I n i t i a l i z a t i o n o f al lowed i n i t i a l i z a t i o n range
7 GConstra inedInt32Object o4 (0 , 1 0) ;
8 / / I n i t i a l i z a t i o n wi th value and al lowed i n i t i a l i z a t i o n range
9 GConstra inedInt32Object o5 (1 ,0 ,1 0) ;

10 / / Cons t ruc t ion and access f r e q u e n t l y happens through smart po in te r s
11 boost : : shared_ptr <GConstrainedInt32Object >
12 p_o6 (new GConstra inedInt32Object (0 , 2)) ;
13
14 / /−−−
15 / / Assignment , value s e t t i n g and r e t r i e v a l
16 o1 = 1; / / Assigning and s e t t i n g a value
17 o2 . setValue (2) ;
18 o4 = o1 ; / / Assignment o f another ob jec t
19 std : : cout << o4 . value () << std : : endl ; / / Value r e t r i e v a l
20
21 / /−−−
22 / / Boundaries
23 / / R e t r i e v a l o f lower i n i t boundary
24 std : : cout << o4 . getLowerBoundary () << std : : endl ;
25 / / R e t r i e v a l o f upper i n i t boundary
26 std : : cout << o4 . getUpperBoundary () << std : : endl ;
27
28 / /−−−
29 / / Assignment o f an adaptor
30 boost : : shared_ptr <GInt32Fl ipAdaptor > i f a _ p t r (new GInt32Fl ipAdaptor ()) ;
31 i f a _ p t r −>s e t A d a p t i o n P r o b a b i l i t y (0 . 0 5) ; / / 5% p r o b a b i l i t y
32 p_o6−>addAdaptor (i f a _ p t r) ;
33 / /−−−

13.5.9. GInt32ObjectCollection

A collection of GInt32Object objects, each with its own adaptor. No adaptor can be assigned to
the collection itself. Listing 13.12 shows typical usage patterns of this class.

Listing 13.12: Typical usage patterns of the GInt32ObjectCollection class
1 / /−−−
2 / / Cons t ruc t ion
3 GIn t32Ob jec tCo l lec t ion c1 ; / / De fau l t cons t ruc to r
4 GIn t32Ob jec tCo l lec t ion c2 (c1) ; / / Copy cons t r uc t i on
5 / / Copy c o ns t r uc t i o n i n s i d e o f smart p o i n t e r
6 boost : : shared_ptr <GIn t32Objec tCo l lec t ion > p_c3 (
7 new GIn t32Ob jec tCo l lec t ion (c1)
8) ;
9 / / Note : Copy c o n s t r u c t i on w i l l c reate deep copies

10 / / o f a l l ob jec ts s tored i n c1
11

124

The Geneva Library Collection 13.5. Summary of Parameter Types

12 / /−−−
13 / / F i l l i n g w i th ob jec ts
14 for (s td : : s i z e _ t i =0; i <10; i ++) {
15 / / Create a smart p o i n t e r wrapping a GInt32Object
16 boost : : shared_ptr <GInt32Object > p (new GInt32Object ()) ;
17 / / Conf igure GInt32Object as requ i red . E . g . , add adaptors
18 / / . . .
19 / / Add to the c o l l e c t i o n
20 c1 . push_back (p) ;
21 }
22
23 / / Note : No adaptor i s added to the c o l l e c t i o n i t s e l f , on ly
24 / / to the ob jec ts conta ined i n i t .
25
26 / /−−−
27 / / Assignment through opera tor= . Note : This w i l l c reate
28 / / deep copies o f a l l ob jec ts s tored i n c1
29 c2 = c1 ;
30 *p_c3 = c1 ;
31 / /−−−
32 / / Access to parameter ob jec ts i n the c o l l e c t i o n
33 for (s td : : s i z e _ t i =0; i <10; i ++) {
34 std : : cout << p_c3−>at (i)−>value () << std : : endl ;
35 std : : cout << c1 [i]−>value () << std : : endl ;
36 }
37
38 / / Note : The i t e r a t o r po in t s to a smart po in te r , so i n order to
39 / / c a l l a f u n c t i o n on the parameter ob jec ts we f i r s t need to
40 / / dereference the i t e r a t o r , then the smart p o i n t e r
41 GIn t32Ob jec tCo l lec t ion : : i t e r a t o r i t ;
42 for (i t =c1 . begin () ; i t != c1 . end () ; ++ i t) {
43 std : : cout << (* i t)−>value () << std : : endl ;
44 }
45 / /−−−

13.5.10. GConstrainedInt32ObjectCollection

A collection of GConstrainedInt32Object objects, each with its own adaptor. Listing 13.13
shows typical usage patterns of this class.

Listing 13.13: Typical usage patterns of the GConstrainedInt32ObjectCollection class
1 / /−−−
2 / / Cons t ruc t ion
3 GConst ra ined In t32Objec tCo l lec t ion c1 ; / / De fau l t cons t r uc to r
4 GConst ra ined In t32Objec tCo l lec t ion c2 (c1) ; / / Copy cons t r uc t i on
5 / / Copy c o n s t r uc t i on i n s i d e o f smart p o i n t e r
6 boost : : shared_ptr <GConst ra inedIn t32Objec tCo l lec t ion >
7 p_c3 (new GConst ra inedIn t32Objec tCo l lec t ion (c1)) ;
8 / / Note : Copy c ons t r uc t i on w i l l c reate deep copies

125

Chapter 13. Parameter Types The Geneva Library Collection

9 / / o f a l l ob jec ts s tored i n c1
10
11 / /−−−
12 / / F i l l i n g w i th ob jec ts
13 for (s td : : s i z e _ t i =0; i <10; i ++) {
14 / / Create a smart p o i n t e r wrapping a GConstra inedInt32Object
15 boost : : shared_ptr <GConstrainedInt32Object >
16 p (new GConstra inedInt32Object ()) ;
17 / / Conf igure GConstra inedInt32Object as requ i red . E . g . , add adaptors
18 / / . . .
19 / / Add to the c o l l e c t i o n
20 c1 . push_back (p) ;
21 }
22
23 / / Note : No adaptor i s added to the c o l l e c t i o n i t s e l f , on ly
24 / / to the ob jec ts conta ined i n i t .
25 / /−−−
26 / / Assignment through opera tor= . Note : This w i l l c reate
27 / / deep copies o f a l l ob jec ts s tored i n c1
28 c2 = c1 ;
29 *p_c3 = c1 ;
30
31 / /−−−
32 / / Access to parameter ob jec ts i n the c o l l e c t i o n
33 for (s td : : s i z e _ t i =0; i <10; i ++) {
34 std : : cout << p_c3−>at (i)−>value () << std : : endl ;
35 std : : cout << c1 [i]−>value () << std : : endl ;
36 }
37
38 / / Note : The i t e r a t o r po in t s to a smart po in te r , so i n order to
39 / / c a l l a f u n c t i o n on the parameter ob jec ts we f i r s t need to
40 / / dereference the i t e r a t o r , then the smart p o i n t e r
41 GConst ra inedIn t32Objec tCo l lec t ion : : i t e r a t o r i t ;
42 for (i t =c1 . begin () ; i t != c1 . end () ; ++ i t) {
43 std : : cout << (* i t)−>value () << std : : endl ;
44 }
45 / /−−−

13.5.11. GInt32Collection

A collection of unconstrained boost::int32_t values (i.e. not objects), with a common adaptor,
assigned to the entire collection. Listing 13.14 shows typical usage patterns of this class.

Listing 13.14: Typical usage patterns of the GInt32Collection class
1 / /−−−
2 / / Cons t ruc t ion
3 GIn t32Co l lec t i on c1 ; / / De fau l t con s t r uc t i on
4 GIn t32Co l lec t i on c2 (c1) ; / / Copy con s t r uc t i on
5 / / Copy c o ns t r uc t i o n i n s i d e o f smart p o i n t e r

126

The Geneva Library Collection 13.5. Summary of Parameter Types

6 boost : : shared_ptr <GIn t32Co l lec t ion > p_c3 (new GIn t32Co l lec t i on (c1)) ;
7 / / 100 boost : : i n t 3 2 _ t values , w i th an i n i t i a l i z a t i o n range of [−3 ,3]
8 GIn t32Co l lec t i on c4 (100 , −3, 3) ;
9

10 / /−−−
11 / / F i l l i n g w i th data
12 for (boost : : i n t 3 2 _ t i = 0 . ; i <100; i ++) {
13 c1 . push_back (i) ;
14 }
15
16 / /−−−
17 / / Adding an adaptor
18 boost : : shared_ptr <GInt32Fl ipAdaptor > i f a _ p t r (new GInt32Fl ipAdaptor ()) ;
19 i f a _ p t r −>s e t A d a p t i o n P r o b a b i l i t y (0 . 0 5) ; / / 5% p r o b a b i l i t y
20 c1 . addAdaptor (i f a _ p t r) ;
21
22 / /−−−
23 / / Assignment through opera tor= . Note : This w i l l a lso create
24 / / deep copies o f the adaptor
25 c2=c1 ;
26 *p_c3 = c1 ;
27
28 / /−−−
29 / / Access to parameter ob jec ts i n the c o l l e c t i o n
30 for (s td : : s i z e _ t i =0; i <c1 . s ize () ; i ++) {
31 std : : cout << c1 [i] << std : : endl ;
32 std : : cout << c1 . a t (i) << std : : endl ;
33 }
34 GIn t32Co l lec t i on : : i t e r a t o r i t ;
35 for (i t =c1 . begin () ; i t != c1 . end () ; ++ i t) {
36 std : : cout << * i t << s td : : endl ;
37 }
38 / /−−−

13.5.12. GBooleanObject

A single boolean value, encapsulated in a parameter object so it can be assigned its own adaptor.
Listing 13.15 shows typical usage patterns of this class.

Listing 13.15: Typical usage patterns of the GBooleanObject class
1 / /−−−
2 / / Cons t ruc t ion
3 GBooleanObject o1 ; / / De fau l t cons t r uc t i on
4 GBooleanObject o2 (o1) ; / / Copy cons t r uc t i o n
5 GBooleanObject o3 (true) ; / / I n i t i a l i z a t i o n by value
6 / / Cons t ruc t ion and access f r e q u e n t l y happens through smart po in te r s
7 boost : : shared_ptr <GBooleanObject > p (new GBooleanObject (true)) ;
8
9 / /−−−

127

Chapter 13. Parameter Types The Geneva Library Collection

10 / / Assignment , value s e t t i n g and r e t r i e v a l
11 o1 = fa lse ; / / Assigning and s e t t i n g a value
12 o2 . setValue (fa lse) ;
13 o3 = o1 ; / / Assignment o f another ob jec t
14 / / Value r e t r i e v a l and value emission
15 std : : cout << (o3 . value () ? true : fa lse) << std : : endl ;
16
17 / /−−−
18 / / Assignment o f an adaptor
19 boost : : shared_ptr <GBooleanAdaptor> bad_ptr (new GBooleanAdaptor ()) ;
20 bad_ptr−>s e t A d a p t i o n P r o b a b i l i t y (0 . 0 5) ; / / 5% adapt ion p r o b a b i l i t y
21 p−>addAdaptor (bad_ptr) ;
22 / /−−−

13.5.13. GBooleanObjectCollection

A collection of GBooleanObject objects, each with its own adaptor. The collection itself cannot
be assigned an adaptor. Listing 13.16 shows typical usage patterns for this class.

Listing 13.16: Typical usage patterns of the GBooleanObjectCollection class
1 / /−−−
2 / / Cons t ruc t ion
3 GBooleanObjectCol lect ion c1 ; / / De fau l t cons t r uc to r
4 GBooleanObjectCol lect ion c2 (c1) ; / / Copy co ns t r uc t i on
5 boost : : shared_ptr <GBooleanObjectCol lect ion > p_c3 (
6 new GBooleanObjectCol lect ion (c1)
7) ; / / Copy c o n s t r uc t i on i n s i d e o f smart p o i n t e r
8 / / Note : Copy c o n s t r u c t i on w i l l c reate deep copies
9 / / o f a l l ob jec ts s tored i n c1

10
11 / /−−−
12 / / F i l l i n g w i th ob jec ts
13 for (s td : : s i z e _ t i =0; i <10; i ++) {
14 / / Create a smart p o i n t e r wrapping a GBooleanObject
15 boost : : shared_ptr <GBooleanObject > p (new GBooleanObject ()) ;
16 / / Conf igure GBooleanObject as requ i red . E . g . , add adaptors
17 / / . . .
18 / / Add to the c o l l e c t i o n
19 c1 . push_back (p) ;
20 }
21
22 / / Note : No adaptor i s added to the c o l l e c t i o n i t s e l f , on ly
23 / / to the ob jec ts conta ined i n i t .
24
25 / /−−−
26 / / Assignment through opera tor= . Note : This w i l l c reate
27 / / deep copies o f a l l ob jec ts s tored i n c1
28 c2 = c1 ;
29 *p_c3 = c1 ;

128

The Geneva Library Collection 13.5. Summary of Parameter Types

30 / /−−−
31 / / Access to parameter ob jec ts i n the c o l l e c t i o n
32 for (s td : : s i z e _ t i =0; i <10; i ++) {
33 std : : cout << p_c3−>at (i)−>value () << std : : endl ;
34 std : : cout << c1 [i]−>value () << std : : endl ;
35 }
36
37 / / Note : The i t e r a t o r po in t s to a smart po in te r , so i n order to
38 / / c a l l a f u n c t i o n on the parameter ob jec ts we f i r s t need to
39 / / dereference the i t e r a t o r , then the smart p o i n t e r
40 GBooleanObjectCol lect ion : : i t e r a t o r i t ;
41 for (i t =c1 . begin () ; i t != c1 . end () ; ++ i t) {
42 std : : cout << (* i t)−>value () << std : : endl ;
43 }
44 / /−−−

13.5.14. GBooleanCollection

A collection of bool values with a common adaptor, which is assigned to the collection object. Listing
13.17 shows typical usage patterns for this class.

Listing 13.17: Typical usage patterns of the GBooleanCollection class
1 / /−−−
2 / / Cons t ruc t ion
3 GBooleanCol lect ion c1 ; / / De fau l t cons t r uc t i o n
4 GBooleanCol lect ion c2 (c1) ; / / Copy cons t r uc t i o n
5 GBooleanCol lect ion c3 (1 0 0) ; / / I n i t i a l i z a t i o n wi th 100 random booleans
6 / / I n i t i a l i z a t i o n wi th 100 random booleans , o f which 25% have a t rue value
7 GBooleanCol lect ion c4 (100 , 0 . 2 5) ;
8 / / Copy c o n s t r uc t i on i n s i d e o f smart p o i n t e r
9 boost : : shared_ptr <GBooleanCol lect ion > p_c5 (new GBooleanCol lect ion (c1)) ;

10
11 / /−−−
12 / / F i l l i n g w i th data
13 for (s td : : s i z e _ t i =0; i <100; i ++) {
14 c1 . push_back (i %2==0?true : fa lse) ;
15 }
16
17 / /−−−
18 / / Adding an adaptor
19 boost : : shared_ptr <GBooleanAdaptor> bad_ptr (new GBooleanAdaptor ()) ;
20 bad_ptr−>s e t A d a p t i o n P r o b a b i l i t y (0 . 0 5) ; / / 5% adapt ion p r o b a b i l i t y
21 p_c5−>addAdaptor (bad_ptr) ;
22
23 / /−−−
24 / / Assignment through opera tor= . Note : This w i l l a lso create
25 / / deep copies o f the adaptor
26 c2=c1 ;
27 *p_c5 = c1 ;

129

Chapter 13. Parameter Types The Geneva Library Collection

28
29 / /−−−
30 / / Access to parameter ob jec ts i n the c o l l e c t i o n
31 for (s td : : s i z e _ t i =0; i <c1 . s ize () ; i ++) {
32 std : : cout << (c1 [i]? " t r ue " : " f a l s e ") << std : : endl ;
33 std : : cout << (c1 . a t (i)? " t r ue " : " f a l s e ") << std : : endl ;
34 }
35 GBooleanCol lect ion : : i t e r a t o r i t ;
36 for (i t =c1 . begin () ; i t != c1 . end () ; ++ i t) {
37 std : : cout << (* i t ? " t r ue " : " f a l s e ") << std : : endl ;
38 }
39 / /−−−

13.5.15. GParameterObjectCollection

Geneva has a special purpose collection capable of holding GParameterBase objects. This
allows to build parameter hierarchies or “parameter trees”. As a GParameterObjectCol-
lection is itself derived from the GParmeterBase class, it can hold objects of its own type, or
generally any other parameter type discussed in the current section 13.5. Listing 13.18 shows typical
usage patterns of this class.

Listing 13.18: Typical usage patterns of the GParameterObjectCollection class

1 / /−−−
2 / / Cons t ruc t ion
3 GParameterObjectCol lect ion c1 ; / / De fau l t cons t ruc to r
4 GParameterObjectCol lect ion c2 (c1) ; / / Copy cons t r uc t i o n
5 boost : : shared_ptr <GParameterObjectCol lect ion > p_c3 (
6 new GParameterObjectCol lect ion (c1)
7) ; / / Copy c o n s t r uc t i on i n s i d e o f smart p o i n t e r
8 / / Note : Copy c o n s t r u c t i on w i l l c reate deep copies
9 / / o f a l l ob jec ts s tored i n c1

10
11 / /−−−
12 / / F i l l i n g w i th ob jec ts . Note t h a t they may have
13 / / d i f f e r e n t types , but must a l l be der ived from
14 / / GParameterBase
15
16 / / Create a smart p o i n t e r wrapping a GDoubleObject
17 boost : : shared_ptr <GDoubleObject> p_d (new GDoubleObject ()) ;
18 / / Conf igure GDoubleObject as requ i red . E . g . , add adaptors
19 / / . . .
20 / / Add to the c o l l e c t i o n
21 c1 . push_back (p_d) ;
22
23 / / Create a smart p o i n t e r wrapping a GInt32Object
24 boost : : shared_ptr <GInt32Object > p_ i (new GInt32Object ()) ;
25 / / Conf igure GInt32Object as requ i red . E . g . , add adaptors
26 / / . . .

130

The Geneva Library Collection 13.5. Summary of Parameter Types

27 / / Add to the c o l l e c t i o n
28 c1 . push_back (p_ i) ;
29
30 / / Create another GParameterObjectCol lect ion ob jec t .
31 / / As i t i s der ived from GParameterBase , we can s to re i t
32 / / i n GParameterObjectCol lect ion ob jec ts and create
33 / / t ree− l i k e s t r u c t u r e s i n t h i s way
34 boost : : shared_ptr <GParameterObjectCol lect ion > p_ch i l d (
35 new GParameterObjectCol lect ion ()
36) ;
37 c1 . push_back (p_ch i l d) ;
38
39 / / Note : No adaptor i s added to the c o l l e c t i o n i t s e l f , on ly
40 / / to the ob jec ts conta ined i n i t (i f they support t h i s) .
41
42 / /−−−
43 / / Assignment through opera tor= . Note : This w i l l c reate
44 / / deep copies o f a l l ob jec ts s tored i n c1
45 c2 = c1 ;
46 *p_c3 = c1 ;
47
48 / /−−−
49 / / Access to parameter ob jec ts i n the c o l l e c t i o n
50
51 / / D i r e c t conversion , i f we know the t a r g e t type
52 boost : : shared_ptr <GDoubleObject> p_d2 = c1 . at <GDoubleObject > (0) ;
53
54 / / Conversion i t e r a t o r −− w i l l r e t u r n a l l GDoubleObject i tems
55 / / s to red on t h i s l e v e l . Note t h a t the convers ion i t e r a t o r w i l l
56 / / * not * recurse i n t o p_ch i l d .
57 GParameterObjectCol lect ion : : conve rs i on_ i t e ra to r <GDoubleObject>
58 i t_conv (c1 . end ()) ;
59
60 for (i t _conv=c1 . begin () ; i t _conv != c1 . end () ; ++ i t_conv) {
61 boost : : shared_ptr <GDoubleObject> p_conv = * i t _conv ;
62 std : : cout << p_conv−>value () << std : : endl ;
63 }
64 / /−−−

131

Chapter 14.

Adaptors

Adaptors determine how parameter objects are mutated in the context of Evolutionary Algorithms and
Geneva’s Simulated Annealing implementation.

Key points: (1) Adaptors are selected by users and are stored in the parameter objects themselves. (2) The
adaption process itself is handled by the Geneva library internally – users do not have to take care that their
adaptors are applied, once they have been loaded into the parameter object. (3) Adaptors also do not influence
the optimization process with other algorithms. (4) Some configuration parameters apply to all adaptors (5) The
most used “general” parameter is the mutation probability. It determines the likelihood for an adaptor to be actually
used (6) The mutation probability may itself be subject to mutation, as a high mutation probability usually works
best far away from the global optimum, whereas close to the optimum a smaller mutation probability works best

This section gives an overview of the majority of adaptors implemented in Geneva so far, as well as
general options applicaple to all adaptors. Figure 14.1 shows the class hierarchy used for adaptors.

14.1. General adaptor options

Mutation Probability

With large amounts of free parameters in an optimization problem it can be useful to limit the number
of changed parameters per mutation. The function setAdaptionProbability() allows to
set the (possibly initial) probability. As the name suggests, the allowed value range of the adaption
probability is [0 : 1].

Variation of the Mutation Probability

In the beginning of the optimization process, far away from the global optimum, a high mutation prob-
ability (usually 1 is generally desired, whereas close to the optimum, lower mutation probabilities are
usually more advantageous.

133

Chapter 14. Adaptors The Geneva Library Collection

Figure 14.1.: Adaptors derive from a common base class whose template parameter determines the
types they can be applied to.

For this reason, Geneva has the ability to adapt the mutation probability itself, as part of the optimiza-
tion process. The speed of this adaption can be controlled with thesetAdaptAdProb(double)
function. The default value for this parameter is 0.1.

A somewhat tricky aspect of a variable mutation probability is the fact that for small numbers of pa-
rameters, a low mutation probability may lead to unchanged individuals. For this reason, Genevas
individuals contain some logic that enforces at least one mutation per iteration and individual.

There is also a need to enforce lower and upper boundaries for the adaption probability. This may be
done with the setAdProbRange(double min, double max) function.

Adaption Mode

Rarely used, but sometimes useful is the option to temporarily switch on or off an adaptor with the
setAdaptionMode() function. When set to ADAPTALWAYS, every call to the adaptor will
lead to an adaption. Not surprisingly, ADAPTNEVER temporarily switches off adaptions with this
adaptor. ADAPTWITHPROB leads back to the default behaviour, where a parameter is only adapted
with a given probability.

Adaption Threshold

Likewise, setAdaptionThreshold(const boost::uint32_t&) allows to limit ex-
ecution of the adaptor to every n th call. I.e., when set to 1, every call to the adaptor will lead to an

134

The Geneva Library Collection 14.2. GDoubleGaussAdaptor

adaption (provided the adaption probability allows it). This is the recommended setting. When set to
2, only ever second call to the adaptor will lead to an adaption. This option is rarely used, arguably
redundant and might be removed from Geneva in the future.

14.2. GDoubleGaussAdaptor

In the mutations implemented in the GDoubleGaussAdaptor, random numbers with a gaus-
sian distribution are added to double parameters. Specific parameters of this adaptor type include the
initial step width (the σ of the gaussian), as well as the minimum and maximum allowed values of σ.

σ may only assume values in the range [0 : 1]. It may thus be interpreted as a percentage of the
allowed or expected value range of a floating point parameter. As an example, given an allowed value
range of a parameter type of [−10 : 10] and a σ of 0.1 (a typical value), the “step width” of gauss
mutation would be 0.1∗20=2.

σ is itself subject to mutation. A configuration parameter which is currently called sigmaSigma in-
fluences the speed of adaption of σ. The adaption of σ as part of the optimization process allows
the algorithm to adapt to varying geometries of the quality surface (e.g. “flat” and “mountaineous”
regions).

“Gauss mutation” is described in detail in section 4.2.2. A gaussian distribution of random numbers,
as might be used in this adaptor type, is shown in figure 4.2. Listing 14.1 shows typical usage patterns
of this class.

Listing 14.1: Typical usage patterns of the GDoubleGaussAdaptor class

1 / /−−−
2 / / Cons t ruc t ion
3 GDoubleGaussAdaptor a1 ; / / De fau l t con s t r uc t i on
4 GDoubleGaussAdaptor a2 (a1) ; / / Copy con s t r uc t i on
5
6 double adProb =0.05; / / A 5% p r o b a b i l i t y t h a t adapt ion a c t u a l l y takes place
7 GDoubleGaussAdaptor a3 (0 . 0 5) ; / / Cons t ruc t ion wi th adapt ion p r o b a b i l i t y
8
9 double sigma =0.2 , sigmaSigma =0.8 , minSigma =0. , maxSigma = 2 . ;

10 / / Cons t ruc t ion wi th s p e c i f i c mutat ion parameters
11 GDoubleGaussAdaptor a4 (sigma , sigmaSigma , minSigma , maxSigma) ;
12 / / Cons t ruc t ion wi th s p e c i f i c mutat ion parameters
13 GDoubleGaussAdaptor a5 (sigma , sigmaSigma , minSigma , maxSigma , adProb) ;
14 / / Cons t ruc t ion i n s i d e o f a smart p o i n t e r
15 boost : : shared_ptr <GDoubleGaussAdaptor> p_a6 (new GDoubleGaussAdaptor ()) ;
16 / /−−−
17 / / Assignment
18 a3 = a1 ;
19 *p_a6 = a1 ;
20 / /−−−
21 / / Se t t i ng and r e t r i e v a l o f s p e c i f i c c o n f i g u r a t i o n parameters
22 a1 . setSigma (sigma) ;
23 double sigma2 = a1 . getSigma () ;

135

Chapter 14. Adaptors The Geneva Library Collection

24
25 a1 . setSigmaRange (minSigma , maxSigma) ;
26 boost : : tup le <double , double> t = a1 . getSigmaRange () ;
27 std : : cout << t . get <0 >() << " " << t . get <1 >() << std : : endl ;
28
29 a1 . setSigmaAdaptionRate (sigmaSigma) ;
30 double adapt ionRate = a1 . getSigmaAdaptionRate () ;
31
32 a1 . s e t A l l (sigma , sigmaSigma , minSigma , maxSigma) ;
33 / /−−−
34 / / Parameters common to a l l adaptors
35 a1 . s e t A d a p t i o n P r o b a b i l i t y (adProb) ;
36 double adProb2 = a1 . ge tAdap t i onP robab i l i t y () ;
37
38 boost : : u i n t 3 2_ t adapt ionThreshold = 1;
39 a1 . setAdapt ionThreshold (adapt ionThreshold) ;
40 adapt ionThreshold = a1 . getAdapt ionThreshold () ;
41
42 / / Always adapt , i r r e s p e c t i v e o f p r o b a b i l i t y
43 a1 . setAdaptionMode (ADAPTALWAYS) ;
44 / / Adapt according to the adapt ion p r o b a b i l i t y
45 a2 . setAdaptionMode (ADAPTWITHPROB) ;
46 / / Temporar i ly d i sab le the adaptor
47 a3 . setAdaptionMode (ADAPTNEVER) ;
48 boost : : l o g i c : : t r i b o o l adaptionMode = a1 . getAdaptionMode () ;
49
50 / /−−−

14.3. GDoubleBiGaussAdaptor

The GDoubleBiGaussAdaptor adaptor replaces the single Gauss of GDoubleGauss-
Adaptor with two gaussians with distance “delta” from each other, centred around 0. The gaus-
sians may optionally have different σ values. The σ values and the distance may be varied as part of
the optimization process to adapt to varying geometries of the quality surface.

The rationale behind this adaptor is that we want to primarily search in regions that have not been
explored yet, but which are still close to the best known solution(s). In comparison, a single gaussian,
as implemented in the GDoubleGaussAdaptor favours the region closest to the best known
solutions.

“Bi-Gauss mutation” is described in detail in section 4.2.2. A bi-gaussian distribution of random num-
bers, as might be used in this adaptor type, is shown in figure 4.5. The adaptor uses a function from
the GRandom family of classes (compare section 31.2.1).

Listing 14.2: Typical usage patterns of the GDoubleBiGaussAdaptor class
1 / /−−−
2 / / Cons t ruc t ion
3 GDoubleBiGaussAdaptor a1 ; / / De fau l t c ons t r u c t i on

136

The Geneva Library Collection 14.3. GDoubleBiGaussAdaptor

4 GDoubleBiGaussAdaptor a2 (a1) ; / / Copy cons t r uc t i on
5
6 double adProb =0.05; / / A 5% p r o b a b i l i t y t h a t adapt ion a c t u a l l y takes place
7 GDoubleBiGaussAdaptor a3 (0 . 0 5) ; / / Cons t ruc t ion wi th adapt ion p r o b a b i l i t y
8
9 / / Cons t ruc t ion i n s i d e o f a smart p o i n t e r

10 boost : : shared_ptr <GDoubleBiGaussAdaptor> p_a4 (new GDoubleBiGaussAdaptor ()) ;
11
12 / /−−−
13 / / Assignment
14 a3 = a1 ;
15 *p_a4 = a1 ;
16
17 / /−−−
18 / / Se t t i ng and r e t r i e v a l o f s p e c i f i c c o n f i g u r a t i o n parameters
19
20 / / sigma1 and sigma2 may d i f f e r
21 a1 . setUseSymmetricSigmas (fa lse) ;
22 bool useSymmetricSigmas = a1 . getUseSymmetricSigmas () ;
23
24 / / Set / get sigma1 and sigma2
25 a1 . setSigma1 (0 . 1) ;
26 a1 . setSigma2 (0 . 2) ;
27 double sigma1 = a1 . getSigma1 () , sigma2 = a1 . getSigma2 () ;
28
29 / / Set / get the al lowed value range of sigma1 and sigma2
30 a1 . setSigma1Range (0 . 0 0 1 , 2 .) ;
31 a1 . setSigma2Range (0 . 0 0 1 , 2 .) ;
32 boost : : tup le <double , double> sigma1Range = a1 . getSigma1Range () ;
33 boost : : tup le <double , double> sigma2Range = a1 . getSigma2Range () ;
34
35 / / Set / get the adapt ion ra te o f sigma1 and sigma2
36 a1 . setSigma1AdaptionRate (0 . 8) ;
37 a1 . setSigma2AdaptionRate (0 . 8) ;
38 double sigma1AdaptionRate = a1 . getSigma1AdaptionRate () ;
39 double sigma2AdaptionRate = a1 . getSigma2AdaptionRate () ;
40
41 / / Set a l l sigma1 and sigma2 parameters a t once . Note : We use
42 / / the lower / upper boundaries ex t rac ted above .
43 a1 . setAl lSigma1 (
44 sigma1
45 , sigma1AdaptionRate
46 , sigma1Range . get <0 >()
47 , sigma1Range . get <1 >()
48) ;
49 a1 . setAl lSigma2 (
50 sigma2
51 , sigma2AdaptionRate
52 , sigma2Range . get <0 >()
53 , sigma2Range . get <1 >()
54) ;

137

Chapter 14. Adaptors The Geneva Library Collection

55
56 / / Set the i n i t i a l d is tance between both peaks
57 / / and r e t i e v e the cu r ren t value
58 a1 . se tDe l ta (1 . 5) ;
59 double de l t a = a1 . getDe l ta () ;
60
61 / / Set / get the lower and upper boundaries o f de l t a
62 a1 . setDeltaRange (0 . , 5 .) ;
63 boost : : tup le <double , double> deltaRange = a1 . getDeltaRange () ;
64
65 / / Set / get the adapt ion ra te o f de l t a
66 a1 . setDel taAdapt ionRate (0 . 8) ;
67 double del taAdapt ionRate = a1 . getDel taAdapt ionRate () ;
68
69 / / Set a l l d e l t a parameters a t once . Note : We use the
70 / / lower and upper boundaries t h a t were ex t rac ted above
71 a1 . s e t A l l D e l t a (
72 de l t a
73 , del taAdapt ionRate
74 , deltaRange . get <0 >()
75 , deltaRange . get <1 >()
76) ;
77
78 / /−−−
79 / / Parameters common to a l l adaptors
80 a1 . s e t A d a p t i o n P r o b a b i l i t y (adProb) ;
81 double adProb2 = a1 . ge tAdap t i onP robab i l i t y () ;
82
83 boost : : u i n t 3 2_ t adapt ionThreshold = 1;
84 a1 . setAdapt ionThreshold (adapt ionThreshold) ;
85 adapt ionThreshold = a1 . getAdapt ionThreshold () ;
86
87 / / Always adapt , i r r e s p e c t i v e o f p r o b a b i l i t y
88 a1 . setAdaptionMode (ADAPTALWAYS) ;
89 / / Adapt according to the adapt ion p r o b a b i l i t y
90 a2 . setAdaptionMode (ADAPTWITHPROB) ;
91 / / Temporar i ly d i sab le the adaptor
92 a3 . setAdaptionMode (ADAPTNEVER) ;
93 boost : : l o g i c : : t r i b o o l adaptionMode = a1 . getAdaptionMode () ;
94
95 / /−−−

14.4. GInt32GaussAdaptor

The GInt32GaussAdaptor mimics the behaviour of the GDoubleGaussAdaptor for
signed 32 bit integer types. Just like its role model, it adds gaussian distributed integer random
numbers to the adaptor’s argument. This means in particular that small changes are favored over
large changes. However, the adaptor does need to take into account that at least a change of 1 is

138

The Geneva Library Collection 14.4. GInt32GaussAdaptor

needed in order to have an effect. Listing 14.3 shows typical usage patterns.

Listing 14.3: Typical usage patterns of the GInt32GaussAdaptor class

1 / /−−−
2 / / Cons t ruc t ion
3 GInt32GaussAdaptor a1 ; / / De fau l t cons t r uc t i on
4 GInt32GaussAdaptor a2 (a1) ; / / Copy con s t r uc t i on
5
6 / / A 5% p r o b a b i l i t y t h a t adapt ion a c t u a l l y takes place
7 double adProb =0.05;
8 / / Cons t ruc t ion wi th adapt ion p r o b a b i l i t y
9 GInt32GaussAdaptor a3 (0 . 0 5) ;

10
11 / / Cons t ruc t ion wi th s p e c i f i c mutat ion parameters
12 double sigma =0.1 , sigmaSigma =0.8 , minSigma =0. , maxSigma=20. ;
13 GInt32GaussAdaptor a4 (sigma , sigmaSigma , minSigma , maxSigma) ;
14 GInt32GaussAdaptor a5 (sigma , sigmaSigma , minSigma , maxSigma , adProb) ;
15
16 / / Cons t ruc t ion i n s i d e o f a smart p o i n t e r
17 boost : : shared_ptr <GInt32GaussAdaptor > p_a6 (new GInt32GaussAdaptor ()) ;
18
19 / /−−−
20 / / Assignment
21 a3 = a1 ;
22 *p_a6 = a1 ;
23
24 / /−−−
25 / / Se t t i ng and r e t r i e v a l o f s p e c i f i c c o n f i g u r a t i o n parameters
26 a1 . setSigma (sigma) ;
27 double sigma2 = a1 . getSigma () ;
28
29 a1 . setSigmaRange (minSigma , maxSigma) ;
30 boost : : tup le <double , double> t = a1 . getSigmaRange () ;
31 std : : cout << t . get <0 >() << " " << t . get <1 >() << std : : endl ;
32
33 a1 . setSigmaAdaptionRate (sigmaSigma) ;
34 double adapt ionRate = a1 . getSigmaAdaptionRate () ;
35
36 a1 . s e t A l l (sigma , sigmaSigma , minSigma , maxSigma) ;
37
38 / /−−−
39 / / Parameters common to a l l adaptors
40 a1 . s e t A d a p t i o n P r o b a b i l i t y (adProb) ;
41 double adProb2 = a1 . ge tAdap t i onP robab i l i t y () ;
42
43 boost : : u i n t 32_ t adapt ionThreshold = 1;
44 a1 . setAdapt ionThreshold (adapt ionThreshold) ;
45 adapt ionThreshold = a1 . getAdapt ionThreshold () ;
46
47 / / Always adapt , i r r e s p e c t i v e o f p r o b a b i l i t y
48 a1 . setAdaptionMode (ADAPTALWAYS) ;

139

Chapter 14. Adaptors The Geneva Library Collection

49 / / Adapt according to the adapt ion p r o b a b i l i t y
50 a2 . setAdaptionMode (ADAPTWITHPROB) ;
51 / / Temporar i ly d i sab le the adaptor
52 a3 . setAdaptionMode (ADAPTNEVER) ;
53
54 boost : : l o g i c : : t r i b o o l adaptionMode = a1 . getAdaptionMode () ;
55
56 / /−−−

14.5. GInt32FlipAdaptor

The GInt32FlipAdaptor adaptor flips an unsigned 32 bit integer up or down randomly. As this
operation is very simple, there are no specific parameters – only the standard parameters available to
all adaptors. Listing 14.4 shows typical usage patterns of this class.

Listing 14.4: Typical usage patterns of the GInt32FlipAdaptor class
1 / /−−−
2 / / Cons t ruc t ion
3 GInt32Fl ipAdaptor a1 ; / / De fau l t c ons t r u c t i on
4 GInt32Fl ipAdaptor a2 (a1) ; / / Copy c ons t r u c t i on
5
6 / / A 5% p r o b a b i l i t y t h a t adapt ion a c t u a l l y takes place
7 double adProb =0.05;
8 / / Cons t ruc t ion wi th adapt ion p r o b a b i l i t y
9 GInt32Fl ipAdaptor a3 (0 . 0 5) ;

10
11 / / Cons t ruc t ion i n s i d e o f a smart p o i n t e r
12 boost : : shared_ptr <GInt32Fl ipAdaptor > p_a4 (new GInt32Fl ipAdaptor ()) ;
13
14 / /−−−
15 / / Assignment
16 a3 = a1 ;
17 *p_a4 = a1 ;
18
19 / /−−−
20 / / Parameters common to a l l adaptors
21 a1 . s e t A d a p t i o n P r o b a b i l i t y (adProb) ;
22 double adProb2 = a1 . ge tAdap t i onP robab i l i t y () ;
23
24 boost : : u i n t 3 2_ t adapt ionThreshold = 1;
25 a1 . setAdapt ionThreshold (adapt ionThreshold) ;
26 adapt ionThreshold = a1 . getAdapt ionThreshold () ;
27
28 / / Always adapt , i r r e s p e c t i v e o f p r o b a b i l i t y
29 a1 . setAdaptionMode (ADAPTALWAYS) ;
30 / / Adapt according to the adapt ion p r o b a b i l i t y
31 a2 . setAdaptionMode (ADAPTWITHPROB) ;
32 / / Temporar i ly d i sab le the adaptor

140

The Geneva Library Collection 14.6. GBooleanAdaptor

33 a3 . setAdaptionMode (ADAPTNEVER) ;
34
35 boost : : l o g i c : : t r i b o o l adaptionMode = a1 . getAdaptionMode () ;
36
37 / /−−−

14.6. GBooleanAdaptor

The GBooleanAdaptor acts almost identical to the GInt32FlipAdaptor, but acts on
boolean values. Thus, flipping is only possible into one direction. Listing 14.5 shows typical usage
patterns of this class.

Listing 14.5: Typical usage patterns of the GBooleanAdaptor class
1 / /−−−
2 / / Cons t ruc t ion
3 GBooleanAdaptor a1 ; / / De fau l t cons t r uc t i on
4 GBooleanAdaptor a2 (a1) ; / / Copy con s t r uc t i on
5
6 / / A 5% p r o b a b i l i t y t h a t adapt ion a c t u a l l y takes place
7 double adProb =0.05;
8 / / Cons t ruc t ion wi th adapt ion p r o b a b i l i t y
9 GBooleanAdaptor a3 (0 . 0 5) ;

10
11 / / Cons t ruc t ion i n s i d e o f a smart p o i n t e r
12 boost : : shared_ptr <GBooleanAdaptor> p_a4 (new GBooleanAdaptor ()) ;
13
14 / /−−−
15 / / Assignment
16 a3 = a1 ;
17 *p_a4 = a1 ;
18
19 / /−−−
20 / / Parameters common to a l l adaptors
21 a1 . s e t A d a p t i o n P r o b a b i l i t y (adProb) ;
22 double adProb2 = a1 . ge tAdap t i onP robab i l i t y () ;
23
24 boost : : u i n t 32_ t adapt ionThreshold = 1;
25 a1 . setAdapt ionThreshold (adapt ionThreshold) ;
26 adapt ionThreshold = a1 . getAdapt ionThreshold () ;
27
28 / / Always adapt , i r r e s p e c t i v e o f p r o b a b i l i t y
29 a1 . setAdaptionMode (ADAPTALWAYS) ;
30 / / Adapt according to the adapt ion p r o b a b i l i t y
31 a2 . setAdaptionMode (ADAPTWITHPROB) ;
32 / / Temporar i ly d i sab le the adaptor
33 a3 . setAdaptionMode (ADAPTNEVER) ;
34
35 boost : : l o g i c : : t r i b o o l adaptionMode = a1 . getAdaptionMode () ;

141

Chapter 14. Adaptors The Geneva Library Collection

36
37 / /−−−

14.7. Adaptors and Constrained Parameter Types

In the context of adaptors, we’d like to draw your attention to a specialty of the Geneva library. If you
look again at figures 13.2 and 13.3, you will see that constraints are implemented by performing a
mapping from an internal, unconstrained value to an externally visible, constrained value. With the
exception of boolean values, adaptors always act on the internal value of constrained types. As a
consequence, they do not need to take into account the constraints of the parameter type.

Figure 14.2 illustrates what happens to a gaussian close to the boundary of a constrained double
type. In essence, “overlapping” regions of the gaussian are “reflected” to valid value ranges of the
parameter range. Contrary to expectation, the gaussian does not appear to be strongly distorted by
this process.

142

The Geneva Library Collection 14.7. Adaptors and Constrained Parameter Types

Figure 14.2.: This figure shows the internal values of a number of collections of gaussian distributed
random numbers with different mean value, as well the externally visible values. The
blue curve shows the actual distribution, the curve with red stripes shows the “input”
gaussian. It is evident that there is very little distortion close to the outer boundaries of
the allowed value range.

143

Chapter 15.

Individuals and Parameters

This chapter discusses the definition of an optimization problem, through the aggregation of parameter
objects (possibly equipped with adaptors) and an evaluation function inside of “individuals”1.

Key points: (1) In the simplest case, an optimization problem can be defined by a specification of the parameters
to be varied, including constraints, and the evaluation function(s) needed to rate a given candidate solution (2) In-
dividuals are always derived from the GParameterSet class. (3) Parameter objects can be added directly
to a GParameterSet, the evaluation function is defined in the derived class provided by the user (4) Individ-
uals can contain entire hierarchies of parameter objects (5) Access to parameter values involves the use of the
streamline() template, the conversion_iterator or direct access of specific parameters (6) It is
possible to selectively extract active, inactive or all parameters (7) Multiple evaluation criteria can be defined in the
evaluation function (8) In the majority of cases, making Individuals fit for serialization does not require much more
than the specification of the parameters to be serialized.

15.1. General Principles

A full definition of an optimization problem is possible by specifying the parameters, their constraints
and the evaluation criteria used to assign one or more quality measures to a given parameter collec-
tion. Both the parameter definition and the evaluation function are highly problem-specific and need
to be provided by the user. This task, however, is greatly facilitated by Geneva, which provides a full
framework for this purpose.

1As discussed in chapter 12, optimization algorithms and parameter sets form two distinct entities. Optimization algo-
rithms may act on GParameterSet-derivatives, which in turn comprise the entire definition of an optimization
problem. Note that “parameter set” and GParameterSet are used interchangeably in this chapter. In the context
of this document, parameter sets are also often called “individuals”. Note, though, that a more exact definition of a
“Geneva individual” would be “candidate solution, used as the input for Geneva’s optimization algorithms”. Geneva
also allows a form of meta evolution, where optimization algorithms become subject to optimization themselves. So
while each parameter set is an individual, not every individual is necessarily a parameter set. For the sake of simplicity,
though, the terms “individual” and “parameter set” are used interchangeably in this chapter.

145

Chapter 15. Individuals and Parameters The Geneva Library Collection

GDoubleCollection

GBooleanObject

GConstrainedInt32Object

GDoubleObject

push_back()

at(2)

at(1)

at(0)

Individual
(derived from GParameterSet)

Parameter 1
boost::shared_ptr<GParameterBase>

Parameter 2
boost::shared_ptr<GParameterBase>

Parameter 3
boost::shared_ptr<GParameterBase>

Parameter 4
boost::shared_ptr<GParameterBase>

Evaluation function(s)

In
te

rf
ac

e:

 s
td

::v
ec

to
r<

bo
os

t::
sh

ar
ed

_p
tr

<
G

P
ar

am
et

er
B

as
e>

 >

0

1

2

3

Figure 15.1.: Geneva’s individuals are derived from the GParameterSet class, which features a
std::vector<> interface. The class stores smart pointers to GParameter-
Base objects, so that it becomes possible to store different parameter types in the
container.

In programming terms, individuals are objects that are derived from GParameterSet. This class
has a std::vector<boost::shared_ptr<GParameterBase> > interface. Or, in
other words, it stores smart pointers to GParameterBase objects, using a std::vector<>
interface. GParameterBase is the base class to a full set of parameter objects, ranging from
single bool values to collections of constrained double values (compare figure 13.1 and the
entire chapter 13). As GParameterSet only knows about base objects, it becomes possible to
assemble an individual from many different parameter types.

To further illustrate this, let us look at an optimization problem that may best be described in terms
of integral, boolean and floating point parameters. In our example, the integer variables may only
assume a certain value range, while the floating point variables are unconstrained, but share common
characteristics (in which case it may make sense to treat them as a collection).

This situation could be modelled by deriving a class from GParameterSet, and successively
adding a GDoubleCollection, GBooleanObject and a GConstrainedInt32-
Object to the object, using the usual std::vector<> function push_back()2. For good

2Note in this context that parameter types may carry further functionality, such as the ability to be mutated through an
adaptor (compare section 12.1.3). If adaptors are required, it is advisable to add them to a parameter object before it

146

The Geneva Library Collection 15.2. fitnessCalculation(): Evaluating Individuals

Figure 15.2.: Geneva’s individuals can serve as the root of an entire hierarchy of parameters, using
the GParameterObjectCollection class. It can be likened to an individual without attached
evaluation function and also features a std::vector<> interface

measure we also add a GDoubleObject, which might represent a single double value with a
different role in the optimization problem than the doubles stored in the GDoubleCollection3.

Figure 15.1 further illustrates the general architecture of an individual. Figure 15.2 shows another
option. With the help of the GParameterObjectCollection – a collection of GParam-
eterBase-derivatives and itself a derivative of GParameterBase – it becomes possible to
define entire parameter hierarchies.

Chapters 11 and 26 illustrate the procedure of defining your own individual with concrete examples.

15.2. fitnessCalculation(): Evaluating Individuals

Optimization algorithms work by successively evaluating candidate solutions (individuals with different
parameter values but identical structure) and deriving4 new candidate solutions from older ones. An
optimization problem can be uniquely defined by the type and constraints of the individuals’ parame-
ters and the evaluation function which assigns a value to a given parameter set.

is attached to an individual.
3Note again that GParameterSet expects these objects to be wrapped into a boost::shared_ptr<>.
4In this context, the term “deriving” does not refer to the C++ programming term “derivation”, but is used in the sense of

“using some of the older individuals’ characteristics”

147

Chapter 15. Individuals and Parameters The Geneva Library Collection

As a key duty in defining an optimization problem, users thus need to overload the double GPa-
rameterSet::fitnessCalculation() function5. Through this function, numeric quan-
tities (often called quality or fitness) are assigned to the candidate solution. In the most common case,
only a single evaluation criterion exists. However, Geneva also allows to define multiple evaluation cri-
teria, with one master-criterion and multiple sub-criteria. This is needed for multi-criterion optimization
(compare e.g. section 2.5).

Getting the evaluation function right can be an iterative procedure. Unless the optimization problem’s
structure is already clearly defined, the engineer’s experience in modelling the problem will play a role.
There will be hidden knowledge, maybe not even consciously known, unexpected effects and false
conceptions. This implies that multiple optimization runs might be necessary before a suitable result
is found. But once it is found, implicit knowledge might have become explicit and misconceptions
might have been eradicated.

15.2.1. Accessing Parameters

Before it becomes possible to assign a fitness to a given parameter set, though, its values need to
be extracted. Remember that Geneva’s individuals store base pointers of parameter objects. Before
accessing their values, they need to be converted to the target type. This adds some overhead, but
also makes Geneva’s individuals quite flexible, as different parameter types can be mixed in an intuitive
way6. There are three ways of gaining access to the parameter values.

streamline()

The streamline() function has already been demonstrated in listing 11.7 on page 95.

Listing 15.1: The streamline function
1 double GParabolo id Ind iv idua l2D : : f i t n e s s C a l c u l a t i o n () {
2 / / [. . .]
3 std : : vector <double> parVec ; / / W i l l hold the parameters
4 this−>s t reaml ine (parVec , ALLPARAMETERS) ; / / Ret r ieve the parameters
5
6 / / Ca lcu la te a f i t n e s s based on the parVec vec to r
7 / / [. . .]
8
9 return r e s u l t ;

10 }

streamline() is a member template of the GParameterSet class. It iterates over all GPa-
rameterBase-objects stored in it and extracts values of a given type. They are then attached to

5Note that it is not strictly necessary to always derive your own class from GParameterSet. Gemfony scientific has code
that allows to call an external application for the evaluation step, with an easily customizable protocol for data exchange.
Talk to us if you are interested in using this for your optimization problems.

6We’d also like to remind you that Geneva aims at optimization problems with particularly long-running evaluation func-
tions, so that the overhead of the type conversion does not play a significant role.

148

The Geneva Library Collection 15.2. fitnessCalculation(): Evaluating Individuals

a std::vector<> provided as argument. When streamline() encounters a GParame-
terBase object that represents a collection, it will recurse into it and extract all parameters of the
desired type. The user then receives the parameter values in the same order in which the correspond-
ing parameters were registered with the individual.

In listing 15.1, the type is determined automatically from the type stored in the parVec vector.
Note that a more verbose way of specifying parameters of which type should be extracted would be
streamline<double>(parVec).

streamline() is the recommended way of accessing parameter values in individuals with differ-
ent parameter types, when the parameter structure does not need to be preserved.

Note that there is a second version of streamline, which accepts a std::map<std::str-
ing, std::vector<target_type> >. The function returns the names of parameter
objects together with their values. As parameter objects may carry multiple values (such as in the
case of a GDoubleCollection), the value-type of the map needs to be a std::vector-
<target_type>.

As the last, optional parameter to streamline it is possible to specify, that only active (switch
ACTIVEONLY), inactive (switch INACTIVEONLY) or all (switch ALLPARAMETERS) should
be extracted.

conversion_iterator

streamline() will recurse into parameter collections (and go deeper, if the parameter collection
itself contains parameter collections). In an individual with a hierarchical parameter structure, it is
possible to iterate over all parameters of a given type on the same level of the tree with the conver-
sion_iterator class template7. It will not only find parameters of a given type on this level, but
also present them to you readily converted from the GParameterBase base class.

Listing 15.2 demonstrates the usage for an individual in which a number of GConstrainedDou-
bleObject objects have been stored. It calculates a parabola from their values.

Listing 15.2: The conversion_iterator class
1 double MyInd iv idua l : : f i t n e s s C a l c u l a t i o n () {
2 double r e s u l t = 0 ;
3
4 / / Note t h a t we need to pass the end()− i t e r a t o r to the
5 / / cons t r uc to r o f the conve rs i on_ i t e ra to r <> .
6 MyInd iv idua l : : conve rs i on_ i t e ra to r <GConstrainedDoubleObject > i t (this−>end ()) ;
7 for (i t = this−>begin () ; i t != this−>end () ; ++ i t) {
8 r e s u l t += (* i t)−>value () * (* i t)−>value () ;
9 }

10
11 return r e s u l t ;
12 }

7The conversion_iterator is implemented as an embedded class inside of the GStdPtrVectorInter-
face – the class the provides the std::vector<> interface to many of Geneva’s collection classes

149

Chapter 15. Individuals and Parameters The Geneva Library Collection

Note that we could have done the same for a GParameterObjectCollection stored in the
individual.

conversion_iterator does not currently have the ability to distinguish between active, inac-
tive or all parameters, as the iterator is implemented in a container-base class GStdPtrVector-
Interface, that does not have any knowledge about parameter objects. However, as the iterator
gives you direct access to the parameter objects, checking for the “active”-state is easy.

Directly accessing the parameter objects

If we do know the parameter structure of the individual, then we can also directly access the parameter
objects and convert them on the fly. As an example, if we positively know that a GConstrained-
DoubleObjectCollection is stored in the first position of our individual, we can extract the
collection as is shown in listing 15.3.

Listing 15.3: Directly accessing parmeter objects

1 double MyInd iv idua l : : f i t n e s s C a l c u l a t i o n () {
2 double r e s u l t = 0 ;
3
4 / / Ex t rac t the GConstra inedDoubleObjectCol lect ion i n p o s i t i o n 0
5 / / Note : This c a l l w i l l throw i f we a c c i d e n t l y t r y to access an
6 / / ob jec t o f another type
7 boost : : shared_ptr <GConstra inedDoubleObjectCol lect ion > vC
8 = at <GConstra inedDoubleObjectCol lect ion > (0) ;
9

10 / / We can now loop over the content o f the c o l l e c t i o n j u s t as i f
11 / / i t were an ord ina ry s td : : vector <GConstrainedDoubleObject > . E . g . :
12 for (s td : : s i z e _ t i =0; i <vC−>s ize () ; i ++) {
13 r e s u l t += vC−>at (i)−>value () * vC−>at (i)−>value () ;
14 }
15
16 / / Note t h a t we could ins tead also have used a
17 / / GConstra inedDoubleObjectCol lect ion : : c o n s t _ i t e r a t o r f o r the loop
18
19 return r e s u l t ;
20 }

15.2.2. Defining Multiple Evaluation Criteria

So far we have assumed that, inside of the fitnessCalculation() function, only a single
fitness is calculated. As discussed in section 2.5, though, it can be necessary to define multiple
evaluation criteria.

A practical example might again be given by the simulation of a car engine, which returns multiple
criteria, such as the fuel consumption, horse power and the amount of pollutants produced by the
motor. All of them may be important.

150

The Geneva Library Collection 15.3. Serialization

On the other hand, Geneva comprises many optimization algorithms, and not all of them can deal
with multiple evaluation criteria. Geneva handles this by identifying a master-evaluation criterion, rep-
resented by the value returned by the fitnessCalculation() function. This fitness will be
used for the assessment of individuals by algorithms that cannot handle more than one evaluation
criterion (a Gradient Descent would be an obvious example).

In addition to the master criterion, it is also possible to specify secondary results inside of fit-
nessCalculation(). This is demonstrated in the 04_GMultiCriterionParabola
example in the Geneva distribution. Listing 15.4 shows the evaluation function of this example.

Listing 15.4: Main results and secondary results
1 double G M u l t i C r i t e r i o n P a r a b o l a I n d i v i d u a l : : f i t n e s s C a l c u l a t i o n () {
2 double main_resu l t = 0 . ; / / W i l l hold the main r e s u l t
3 std : : vector <double> parVec ; / / W i l l hold the i n d i v i d u a l parameters
4
5 this−>s t reaml ine (parVec) ; / / Ret r ieve the parameters
6
7 / / Do the ac tua l c a l c u l a t i o n s . Note t h a t the f i r s t c a l c u l a t i o n
8 / / counts as the main r e s u l t and t h a t we can r e g i s t e r other ,
9 / / secondary eva lua t i on c r i t e r i a .

10 main_resu l t = GSQUARED(parVec [0] − minima_ [0]) ;
11 for (s td : : s i z e _ t i =0; i <parVec . s ize () ; i ++) {
12 reg is te rSecondaryResu l t (GSQUARED(parVec [i] − minima_ [i])) ;
13 }
14
15 return main_resu l t ;
16 }

In this example, we have multiple, one-dimensional parabolas, each with its own optimum8. An al-
gorithm capable of dealing with multiple evaluation criteria then needs to find parameter values that
simultaneously minimize all parabolas.

As a word of precaution, we suggest not to chain algorithms capable of dealing with multiple
criteria with those that cannot. If you do have to mix them, run the “single-criterion” algorithm
first.

15.3. Serialization

Geneva’s individuals need to be serializable, so they can be easily sent over a network for remote-
evaluation9. Geneva’s serialization framework is based on the Boost.Serialization library[61]. Detailed
explanations of this library can be found at the Boost website (http://www.boost.org). A
good introduction to the serialization library is also available online through a portal[69].

Note, that, in the vast majority of cases, you do not need to understand the details of Boost.-
Serialization, though.

8GSQUARED is a macro that calculates the square of its argument.
9On a side note, this feature is also used for check-pointing

151

http://www.boost.org

Chapter 15. Individuals and Parameters The Geneva Library Collection

Geneva has all necessary code for the serialization of its optimization-related objects already built in,
so that you can concentrate on the description of those variables of your individuals that are required
for the evaluation of your objects. Listing 15.5 gives an example of the code that is required in your
individuals. It is taken from the GFunctionIndividual class that can be found in the Geneva
distribution below the path $GENEVAHOME/include/geneva-individuals

Listing 15.5: Serialization of user-defined individuals usually only requires the specification of those
variables that need to be serialized

1 class GFunc t ion Ind iv idua l : public GParameterSet
2 {
3 private :
4 f r iend class boost : : s e r i a l i z a t i o n : : access ;
5
6 template <class Archive >
7 void s e r i a l i z e (Archive & ar , const unsigned i n t v) {
8 ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(GParameterSet)
9 & BOOST_SERIALIZATION_NVP(demoFunction_) ;

10 }
11
12 [. . .]
13 } ;

The code in listing 15.5 holds the required specifications both for the serialization and the de-serialization
of GFunctionIndividual objects.

First, (de-)serialization of the parent class GParameterSet is triggered, then the serialization of
the one local variable (denoting the type of evaluation function used in this individual) is specified.
Note that the serialize() template does not need to be public, but can be private. However,
the friend declaration in listing 15.5 is required, if the serialize() function is declared private.

In the serialization step, Boost.Serialization then writes all required (and specified) data to a stream,
either in plain text, XML or binary format10. During de-serialization, Boost.Serialization then creates
a default-constructed object of your individual11. Boost.Serialization then loads all data specified
in the serialize() function back into the corresponding variables, so that, for the purpose of
evaluation, the de-serialized object is identical to the original object (as long as you have specified all
necessary data, obviously).

Boost.Serialization also needs to be made aware of your individual. In order to achieve this, in the case
of GFunctionIndividual just add the macro BOOST_CLASS_EXPORT_KEY(class
name) to the header file of your individual, and the macro BOOST_CLASS_EXPORT_IMPLE-
MENT(class name). So, in the case of GFunctionIndividual, the required state-
ments would beBOOST_CLASS_EXPORT_KEY(Gem::Geneva::GFunctionIndivi-
dual) andBOOST_CLASS_EXPORT_IMPLEMENT(Gem::Geneva::GFunctionIn-
dividual).

10. . . usually the most effective, but not recommended for cross-platform use
11i.e. there needs to be a default constructor in your individual. Note, though, that it may be private.

152

The Geneva Library Collection 15.4. Further Interface Functions

Beyond this, usually no other user-action is required. For some advanced cases (e.g. different code for
serialization and de-serialization) we suggest to have a look at the Boost.Serialization documentation.

15.3.1. Dealing with Large Data-Sets

Complex evaluation functions will often require large data sets as input. It is not useful to serialize
these data sets and ship them over a network, if they are static (i.e. not specific to each new or
modified individual). Instead, they should be loaded just once remotely.

Geneva has a framework for this. The details of this operation are described in section 23.3.1, together
with a discussion of networked execution.

As an example when training feed-forward neural networks with Geneva (compare section 9.3), the
training data doesn’t change, only the network’s weights do. Hence only the weights need to be
transferred to the remote site.

15.4. Further Interface Functions

Apart from the fitnessCalculation() function, a number of other functions need to be
defined for each individual. Most were already discussed in the introductory example in chapter 11. In
order to make this chapter self-contained, though, we again list the requirements below.

The default constructor

Each individual needs to have a default constructor12 Note that it does not have to be public, nor
does it have to do anything useful. However, Geneva uses the Boost.Serialization library,
which requires serializable objects to have a default constructor.

The copy constructor

There needs to be a public copy constructor13. It is particularly required for the clone_() function
(see below).

The destructor

It is advisable to define a virtual destructor for your individuals.

12I.e. a constructor that does not take any arguments,
13A copy constructor copies the state of another object of the same type

153

Chapter 15. Individuals and Parameters The Geneva Library Collection

operator=()

It is recommended (but not required) to have a public operator=(). Note that it can be easily
implemented through the function load() which is available for every individual. operator=()
should return a constant reference to your individual.

load_() and clone_()

Every Geneva individual needs to have protected load_() and clone_() functions. Their
general duties should be self-explanatory. Their implementation is straight forward. Please note
that particularly loading also needs to take care of the parent class by calling the GParameter-
Set::load() function. Cloning is trivial and is achieved by just copy-constructing an individual.
See chapter 11 for examples.

15.5. Personalities

Individuals are independent from optimization algorithms. However, optimization algorithms need to
be able to associate data with individuals. This is done with the help of the GPersonality-
Traits class and its derivatives (such as the GEAPersonalityTraits class in the case
of Evolutionary Algorithms). Pointers to these classes can be stored in an individual. Users will not
usually need to interact with the personality trait classes. The one exception occurs when users wish
to write their own information providers, i.e. classes that emit information on the progress of the
optimization in regular intervals. The details are discussed in chapter 25.

Here we just want to say that it is possible to access the personality trait objects through the GOpti-
mizableEntity::getPersonalityTraits<personality_type>() member
template.

154

Chapter 16.

Advanced Constraint Handling

This chapter discusses generalized constraint handling beyond individual parameters and the facilities
provided by Geneva to deal with such constraints. It also discusses a facility to flag invalid solutions
after the evaluation function has run.

Key points: (1) Constraints are not limited to single parameters (2) A parameter’s constraints can depend on the
current value of another variable (3) With many such “inter-parameter constraints”, the valid parameter space can
be very small compared to the parameter space described by individual parameter boundaries alone (4) Optimiza-
tion algorithms need to avoid spending too much time in “invalid” areas of the parameter space, but might not be
able to visit invalid areas altogether (5) Optimization algorithms (and/or individuals) must make sure not to call
evaluation functions with invalid parameter sets, as these might return invalid results or could even crash the entire
program

Chapter 13 has already discussed various constrained value types, such as the GConstrained-
DoubleObject class. Such constrained types can be used whenever it is known that a given vari-
able will never exceed given boundaries. For example, the velocity of a car will never be lower than 0
and, for all practical purposes, will never reach 400 kilometers per hour. So the variable might be suffi-
ciently described using a GConstrainedDoubleObject object with boundaries [0,400[.

However, there may be situations, where variable constraints depend on the current value of other
variables. E.g. – in order to stay with the “car” example – the allowed speed of a car will certainly
depend on its current geographic location, as different speed restrictions apply inside and outside of
city boundaries, on motorways, etc. . So an optimization of the traffic flow (such as the minimization of
the average time needed from A to B) would have to take into account dependencies between variable
constraints and values.

16.1. Visualization

The effects of such dependencies can be graphically visualized only for simple cases, as any kind of
dependency between any number of variables (and their constraints) may be possible. So a gener-
alized description will be difficult. In order to better illustrate the problem, though, we will consider a

155

Chapter 16. Advanced Constraint Handling The Geneva Library Collection

Figure 16.1.: A constraint x+y <= 1 renders part of the parameter space invalid

situation, where two variables x and y may only assume values in the range [0,1], and the sum
of both variables is also constrained by 1 (compare equation 16.1).

x+y <=1 (16.1)

Thus only variable combinations, whose sum is smaller or equal 1 are considered valid. Figure 16.1
shows valid (grey) and invalid (white) areas resulting from this setup1.

16.2. Problem Definition

In other words, half of the parameter space violates the constraint. The situation becomes even more
severe with more than 2 variables. E.g., with three variables, with a “sum-constraint” equivalent to
equation 16.1 only 25% of the parameter space is valid, with 4 variables 12.5% of the parameter
space, and so on. Note that the evaluation function of parameter sets may (or may not) be defined in
the whole parameter space, but valid results of the optimization problem may certainly only be found
in those areas that do not violate any “inter-parameter constraint”.

1Another, more complex example is presented by the Ramachandran plot. It plots backbone dihedral angles against
amino acid residues of proteins. Only part of the parameter space leads to solutions which can actually be found in
nature, which is an important fact to know when performing protein folding.

156

The Geneva Library Collection 16.2. Problem Definition

Figure 16.2.: Evaluation workflow in the presence of potentially invalid solutions

So the optimization algorithm needs to avoid “visiting” invalid areas of the parameter space, because

• the evaluation function might not be defined in this area and return erroneous results or might
even crash

• the best (achievable) result of the optimization problem will not be found there. Spending too
much time there will make the entire optimization process less effective

On the other hand, as no “standard description” of invalid areas can be achieved easily, invalid areas
of the parameter space must be dealt with as part of the optimization procedure. This becomes even
more important as it will be difficult for optimization algorithms to just “jump” from one valid area to
another, if these are seperated by invalid solutions. Some algoritms, such as “Evolutionary strategies”
could cope with invalid areas, if these had a consistently worse evaluation than valid areas (but no
constant evaluation).

Hence an “ideal” solution to this dilemma would have to fulfill the following conditions:

1. It must be possible to identify invalid solutions even with multiple “inter-parameter constraints”

2. It would be advantageous if a “level of invalidity” could be defined for invalid solutions2

3. Calling the evaluation function in invalid areas of the parameter space must be avoided, as it
might return invalid results or crash the program. A replacement value should be provided.

4. Distinction between valid and invalid areas should be done on the level of individuals, not opti-
mization algorithms.

5. There should be no need for optimization algorithms to distinguish between valid and invalid
areas of the parameter space

6. Spending too much time in invalid areas should be avoided

7. An evaluation must be assigned to invalid areas of the parameter space that is consistently
worse than any possible evaluation of valid areas

8. The evaluation of invalid areas should improve when nearing valid areas

2. . . which may be difficult for the Ramachandran plot

157

Chapter 16. Advanced Constraint Handling The Geneva Library Collection

Figure 16.3.: Valid solutions of a parabola with a “sum-constraint” (left) and an additional “sphere”
constraint (right). The solutions were determined with Genevas parameter scan

16.3. Identifying invalid candidate solutions with Geneva

Geneva contains a class infrastructure allowing to specify whether a constraint is fulfilled by the pa-
rameters identifying an individual, or to what extent a constraint has been violated. The idea is to
associate a “validity level” with candidate solutions.

Note that validity checks may be performed prior to the evaluation of a condidate solution, so
custom checkes may not depend on an up-to-date fitness. Indeed calling the fitness function on
an un-evaluated individual may throw.

The validity level is calculated from the parameter values of a candidate solution and does not re-
quire the evaluation function to be called. Validity levels > 1 indicate that a violation has occurred.
The difference between the actual return value and 1 is meant as an indication, how severe the
violation is and is the most important ingredient to satisfy condition 2 in section 16.2. Values <
0 are either considered to be an error or valid, depending on a setting of the constraint objects
(GPreEvaluationValidityCheckT<ind_type>::setAllowNegative()). If
such values are considered to be invalid, a “replacement validity level” > 1 is calculated for negative
validity levels. Values in the range [0,1] always indicate that the constraint wasn’t violated3.

Multiple constraints may be aggregated, and a joint “validityLevel” can be calculated according to user-
defined policies. The most likely choice seems to be the product of the validity levels of all “invalid”
constraints or 0, if no constraint was violated (policy “Gem::Geneva::MULTIPLYINVALID”).
Another policy (Gem::Geneva::ADDINVALID) simply adds the validity levels of invalid candi-
date solutions.

In order to define a constraint, a user needs to derive a class from Gem::Geneva::GPara-
meterSetConstraint. Listing 16.1 shows a strongly simplified header of a constraint check,
whether the sum of a number of variables exceeds a given threshold.

3Usually, a value of 0 is returned for all valid solutions.

158

The Geneva Library Collection 16.3. Identifying invalid candidate solutions with Geneva

Listing 16.1: Simplified overload of the GParameterSetConstraint class defining a "sum" constraint

1 class GDoubleSumConstraint : public GParameterSetConstraint {
2 public :
3 GDoubleSumConstraint () ;
4 GDoubleSumConstraint (const double& C) ;
5 GDoubleSumConstraint (const GDoubleSumConstraint &) ;
6
7 v i r t u a l ~GDoubleSumConstraint () ;
8
9 protected :

10 v i r t u a l double check_ (const GParameterSet *) const ;
11
12 v i r t u a l void load_ (const GObject *) ;
13 v i r t u a l GObject * clone_ () const ;
14
15 private :
16 double C_; / / The constant t h a t should not be exceeded by the sum of parameters
17 } ;

Note that the class derives indirectly from GObject and thus needs to implement all functions
expected by that class, in particular the load_() and clone_() functions. Not shown in listing
16.1 is the serialization code, which should be added, but is trivial in this case.

For further details and the complete code we suggest to also have a look at the GFunctionIn-
dividual.hpp/.cpp files, which have various examples for constraint objects.

The most important component of the constraint check ist the double check_(const GPa-
rameterSet *) const function. It gets “public” access to a GParameterSet object and re-
turns a double value indicating whether (and to what extent) the constraint is violated or not.

Listing 16.2: The definition of the actual check for constraint violation

1 double GDoubleSumConstraint : : check_ (
2 const GParameterSet *p
3) const {
4 s td : : vector <double> parVec ;
5 p−>s t reaml ine (parVec) ;
6
7 double sum = 0 . ;
8 s td : : vector <double > : : i t e r a t o r i t ;
9 for (i t =parVec . begin () ; i t != parVec . end () ; ++ i t) {

10 sum += * i t ;
11 }
12
13 i f (sum < C_) {
14 return 0 . ;
15 } else {
16 return sum/C_ ;
17 }
18 }

159

Chapter 16. Advanced Constraint Handling The Geneva Library Collection

Listing 16.2 shows the definition of the constraint check. The “amount of violation” is simply calculated
by normalizing the sum with the constraint value C_.

It is also possible to aggregate several constraints. Example 14_GDependentConstraints
shows how this is done and how the “constraint collection” can be added to an individual. Listing 16.3
shows an excerpt from this example.

Listing 16.3: Constraints can be aggregated
1 using namespace boost ;
2
3 boost : : shared_ptr <GFunct ion Ind iv idua l > p = g f i _ p t r −>get <GFunct ion Ind iv idua l > () ;
4
5 / / Create the c o n s t r a i n t ob jec ts
6 shared_ptr <GDoubleSumConstraint>
7 doublesum_const ra in t_pt r (new GDoubleSumConstraint (1 .)) ;
8 shared_ptr <GSphereConstraint >
9 sphe re_cons t ra in t_p t r (new GSphereConstraint (3 .)) ;

10 shared_ptr <GParameterSetFormulaConstraint >
11 fo rmu la_cons t ra i n t (new GParameterSetFormulaConstraint (
12 " fabs (s in ({ { x } }) / min ({ { y } } , 0.000001)) "
13)
14) ; / / s i n (x) < y
15
16 / / Create a check combiner and add the c o n s t r a i n t ob jec ts to i t
17 shared_ptr <GCheckCombinerT<GOpt imizableEnt i ty > >
18 combiner_ptr (new GCheckCombinerT<GOpt imizableEnt i ty > ()) ;
19 combiner_ptr−>setCombinerPol icy (Gem: : Geneva : : MULTIPLYINVALID) ;
20
21 combiner_ptr−>addCheck (doub lesum_const ra in t_pt r) ;
22 combiner_ptr−>addCheck (sphe re_cons t ra in t_p t r) ;
23 combiner_ptr−>addCheck (fo rmu la_cons t ra i n t) ;
24
25 / / Reg is te r the combiner w i th the i n d i v i d u a l (note : we could a lso have r e g i s t e r e d
26 / / one of the " s i n g l e " c o n s t r a i n t s here (see below f o r commented−out examples)
27 p−>r e g i s t e r C o n s t r a i n t (combiner_ptr) ;
28
29 / / p−>r e g i s t e r C o n s t r a i n t (doub lesum_const ra in t_pt r) ;
30 / / p−>r e g i s t e r C o n s t r a i n t (sphe re_cons t ra in t_p t r) ;
31 / / p−>r e g i s t e r C o n s t r a i n t (f o rmu la_cons t ra i n t) ;

As a first step, an individual is obtained from a factory class. Then various constraints are instantiated
(one of the ist the GDoubleSumConstraint discussed above).

In the next step, a “check combiner” object is created, and the constraint objects are registered with
it. As we now have multiple return values of constraint objects, we need to set a policy for the ag-
gregation of return values. The most useful option seems to be to muliply all invalid values (policy
Gem::Geneva::MULTIPLYINVALID) or return 0, if no constraint was violated.

Finally, the GCheckCombinerT<> object is registered with the individual. Only a single con-
straint object may be registered with an individual, which is why we use the “check combiner”. Alter-
natively, each of the constraints could have been exclusively registered with the GFunctionIndividual

160

The Geneva Library Collection 16.4. Transparent solution handling

object.

One possibly interesting, predefined constraint object used in the example is called GParame-
terSetFormulaConstraint. It takes a textual formula (here fabs(sin(x)/max(y,
0.00001))) and evaluates whether the individual violates this formula. This can be used to dy-
namically add checks on the command line or through a configuration file.

The formula accepts parameter names – these must be identical to the names assigned to parameter
objects using the GParameterBase::setParameterName() function (which is optional
– but it is an error when a variable name used in the formula isn’t found in the parameter object).
For ease of parsing, variable names must be enclosed in double curly braces, such as {{x}} and {{y}}.
Apart from that, the formula syntax is mostly identical to the C/C++ notation, including most predefined
functions.

The underlying parser is described in section 33.10. Further information can also be found in the
GFormulaParser test in the Geneva distribution.

Figure 16.3 shows the result of the aggregation of a “sum constraint” and a “sphere constraint” (only
solutions inside of a sphere with a given radius are considered to be valid). The underlying evaluation
function is a simple parabola. The plots were created using Genevas parameter scan implementation
(compare chapter 22).

Note that Geneva caches the “invalidity” values, as their calculation may be computationally expensive.
Re-calculation thus only happens for individuals whose dirty flag is set, or if the evaluation id4 does
not match the one stored for the individual.

16.4. Transparent solution handling

From the point of view of the optimization algorithm it would be ideal if it could treat all candidate
solutions alike, independent of whether they are valid or invalid. This is equivalent with the request for
a common quality surfance both for valid and invalid solutins.

However, valid solutions must have a better evaluation than invalid solutions, and invalid parameter
sets “close” to valid areas of the parameter space should have a better evaluation than those far away
(Requirement 7 in section 16.2), so that the optimization process will move to valid regions of the
parameter space as quickly as possible.

With the validity checks described in section 16.3 all this becomes possible, as long as constraints
fulfill the conventions described there5.

Four strategies have been implemented in Geneva so far:

• The simplest (and aguably least satisfying) solution assigns a constant value to invalid parame-
ter sets. The value chosen is the worst possible double value (i.e. MAX_DOUBLE in the case
of minimization, MIN_DOUBLE otherwise). This solution is not very satisfying, as it presents

4A unique id assigned to a given evaluation
5i.e. a validity level in the range [0,1] indicates a valid parameter set, values >1 indicate invalidity.

161

Chapter 16. Advanced Constraint Handling The Geneva Library Collection

Figure 16.4.: Quality surface including invalid in the case of the USESIGMOID policy

the optimization algorithm with a flat quality surface in the invalid areas of the parameter space.
Hence there is no indication for the algorithm where it should search for better solutions [Policy:
“USEWORSTCASEFORINVALUD”].

• Geneva knows the worst known valid solution of each iteration. Evaluations of invalid regions
are then calculated as a multiple of its fitness. The multiplier is calculated from the validiy
level(s) of the constraint check(s). This way it is ensured that invalid solutions are always worse
than valid solutions [Policy “USEWORSTKNOWNVALIDFORINVALID”]. The disadvantage of
this solution is that the same area of the parameter space may receive different evaluations,
depending on what the worst known valid solutions is at the moment.

• Geneva can apply a sigmoid function (with configurable parameters) to valid solutions. By
default, the function converges to 10000. Invalid solutions receive a multiple of this threshold
as a rating, calculated again from the level of invalidity. This method is mathematically more
satisfying, but has the disadvantage that the evaluations stored in the GParameterSet
objects are no longer the same as the “real” evaluation. Geneva thus makes these ratings
accessible as well [Policy “USESIGMOID”].

• Finally, it is possible to tell Geneva to just call the user-defined evaluation function anyway,
regardless of whether the individual is valid or not. It is then up to the user to find ways of
dealing with parameter sets that are tagged as “invalid”.

162

The Geneva Library Collection 16.5. Constrained optimization with the USESIGMOID policy

valid primary valid secondary invalid primary invalid secondary
USESIMPLE Normal Normal Result dependent Result dependent
EVALUATION evaluation evaluation on evaluation on evaluation

result result function function
USEWORSTCASE Normal Normal Worst possible Worst possible
FORINVALID evaluation evaluation evaluation, e.g. evaluation, e.g.

result result MAX_DOUBLE for MAX_DOUBLE for
minimization minimization

USEWORST Normal Normal Worst known Worst known
KNOWN evaluation evaluation valid primary valid secondary

VALIDFOR result result fitness of the current fitness of the current
INVALID iteration, multiplied by iteration, multiplied by

level of invalidity level of invalidity
USESIGMOID Primary Secondary Upper or lower Upper or lower

evaluation evaluation boundary of sigmoid, boundary of sigmoid,
result result multiplied by level multiplied by level

transformed transformed of invalidity of invalidity
by sigmoid by sigmoid

function function
Marked as none none Worst possible Worst possible

invalid by the evaluation, e.g. evaluation, e.g.
user during MAX_DOUBLE for MAX_DOUBLE for

the evaluation minimization minimization

Table 16.1.: Possible evaluation modes and values assigned to parameter sets

16.5. Constrained optimization with the USESIGMOID policy

The USESIGMOID policy seems to present the most satisfying solution of th options presented
in section 16.4. Contrary to the USEWORSTKNOWNVALIDFORINVALID policy, the evaluation
of invalid solutions does not depend on the progress of the optimization so far (i.e. the worst valid
solution found up to that point). Invalid solutons are rated consistently worse than valid solutions, and
the mapping for valid and invalid solutions is far easier to implement for the USESIGMOID policy
than for USEWORSTKNOWNVALIDFORINVALID. The invalidity can be applied to a constant
value (the boundary of the sigmoid function). Thus, for most cases, we recommend this policy. Figure
16.5 demonstrates the effect the sigmoid function has on a parabola (plotted in blue).

Note that a potential disadvantage of USESIGMOID is a loss of accuracy for parametersets, whose
evaluations are close to the boundaries of the sigmoid. However, where this becomes apparent,
one may raise the boundaries of the sigmoid, which are available as configuration parameters of the

163

Chapter 16. Advanced Constraint Handling The Geneva Library Collection

Figure 16.5.: The effect that the application of a sigmoid function has on a parabola (plotted in blue)

algorithm. Another possible disadvantage is the fact that the “true” evaluation is transformed by a
function (the sigmoid). This may be confusing in cases where the absolute evaluation of parameter
sets is important. However, please note that Geneva internally stores the “true” evaluation and makes
it available to the user (see section 16.7 for further information).

Figure 16.4 shows the assembled quality surfaces of a parabola for the constraints discussed in sec-
tion 16.3. The plot on the upper left-hand side shows the quality surface for the “sum-constraint” with
both valid and invalid solutions. The valid solution (of a parabola) appear as a flat surface at the bot-
tom, as the invalid solutions assume consistently (far) higher values. Please note the gap between
valid and invalid solutions, resulting from the difference between the worst known valid solution and
the upper boundary of the parabola.

The plot on the upper right-hand side of figure 16.4 shows the “sphere” constraint for the 2-dimensional
parabola. Again the gap between valid and invalid solutions is visible.

The lower left-hand side illustrates a constraint, where only those solutions are considered to be valid
that comply with

��s i n (x)/y
��< 1. It is plotted with Gnuplot instead of the usual parameter scan in

order to make the resulting structure easier to recognize.

The plot on the lower right-hand side finally shows the entire quality surface for the aggregation of
all three constraints. It is immediately visible that the optimization algorithm will attempt to follow the
“invalidity slope” towards valid solutions.

164

The Geneva Library Collection 16.6. Other ways of identifying invalid solutions

16.6. Other ways of identifying invalid solutions

It may happen that it is not known until after the evaluation function has run that a given parameter
set is invalid. One example for such a situation could be a simulation that is used for the evaluation
of a parameter set. It might then not be known until after the simulation has run that the parameter
set does not represent a useful solution. Users may in this situation mark a parameter set as invalid
through a call to the GOptimizableEntity::userMarkAsInvalid() function. Note
that this call must be made from within the fitnessCalculation() function.

When an invalid solution of this type is found, Geneva will simply assign the worst possible evaluation
to the corresponding individual, so that it is sorted out in the next iteration. Users may alternatively
assign a “valid” evaluation to the individual, but should make sure that its value is worse than any valid
solution.

Figure 16.2 shows the overall workflow used to determine sensible return values in the presence of
potentially invalid solutions. Table 16.1 gives on overview of the consequences of each of the available
ways of dealing with invalid solutions.

16.7. Accessing “true” and “transformed” fitness values

Users may be interested in both the true evaluation (provided there is one . . .) and the transformed
evaluation. For this purpose, individuals in Geneva provide several functions.

The standard function to retrieve access to the “true” (i.e. untransformed) fitness is called dou-
ble fitness(), or more generally double fitness(const std::size_t&), if
one needs to get access to both primary and secondary fitness values.

Note that the term “fitness” does not make sense for an individual, whose parameters have been
changed without re-evaluation. Hence, by default, the above fitness functions will throw, when they
are called for an individual, whose “dirty flag” is set.

If you want to explicitly allow re-evaluation, you may pass an additional boolean parameter AL-
LOWREEVALUATION to the fitness(const std::size_t&) function.

Access to the transformed fitness is given through the double transformedFitness()
const anddouble transformedFitness(const std::size_t&) const func-
tions. These functions assume that the individual has already been evaluated and the “dirty flag” isn’t
set. They will throw, if this is not the case.

165

Chapter 17.

Common Traits of Optimization Algorithms

This chapter describes the common features and characteristics of optimization algorithms and as-
sociated collections of individuals, as implemented in the Geneva library collection. The description
particularly pertains to the GOptimizationAlgorithmT class, which forms the basis of all
algorithms implemented in Geneva.

Key points: (1) All of Geneva’s optimization algorithms derive from a common base class (2) This base class,
GOptimizationAlgorithmT, implements the actions common to all algorithms, such as the main loop,
information emission, or halt criteria (3) Each algorithm must implement a number of purely virtual functions of
the base class, of which double cycleLogic() is arguably the most important (4) Information is emitted
in regular intervals (5) Custom halt criteria, such as the maximum allowed number of iterations or the maximum
amount of time for the optimization run, are implemented in the base class and apply to all algorithms (6) Cus-
tom halt criteria may be added (7) Each algorithm cares for its own parallelization, but must implement a serial
and multi-threaded mode, as well as a variant that communicates through a broker (8) Addition of individuals to
optimization algorithms mostly happens through a std::vector<> interface (9) As an experimental feature,
GOptimizationAlgorithmT implements a check-pointing infrastructure.

We will start with a description of the class layout chosen for optimization algorithms and then discuss
population types, as well as how candidate solutions may be added to algorithms.

Note that many of the configuration options described below can also be passed to the algo-
rithm through a configuration file instead of direct calls to member functions. Further details on
this topic are provided in the chapters describing each algorithm.

17.1. Class Layout

All of Geneva’s optimization algorithms inherit from a common base class called GOptimiza-
tionAlgorithmT. The T at the end of the name indicates that this is a template class. In
the algorithms implemented so far, the template argument is either GParameterSet or GOp-
timizableEntity1. GParameterSet is used for algorithms that act directly on problem

1Note that GParameterSet derives indirectly from GOptimizableEntity.

167

Chapter 17. Common Traits of Optimization Algorithms The Geneva Library Collection

Figure 17.1.: Optimization algorithms share common features, such as the definition of halt criteria,
the main optimization cycle or the basic population structure. They can be implemented
in a common base class, called GOptimizationAlgorithmT in Geneva.

descriptions (aka candidate solutions). GOptimizableEntity is used for algorithms that also
allow meta optimization (which is currently only true for Evolutionary Algorithms).

Base classes for each algorithm implement the features that cannot easily be parallelized. Each
algorithm then implements at least a serial variant (used mainly for debugging) a multi-threaded variant
used for multi-core machines large enough for the optimization problem at hand, and a variant that
communicates with a broker, which can itself deal with different forms of parallelization. The broker’s
most prominent duty is to communicate with networked clients, through a dedicated “consumer”. See
chapter 32 covering the courtier library for further information.

Note that it would have been possible to implement all parallelization modes in the common base
class. However, this would have enforced strong restrictions on what can be parallelized in Geneva2.
The current design allows each algorithm a finer control over what it wishes to parallelize and how, but
implies some overhead in implementing new algorithms. All algorithms may act on the same problem
descriptions. Figure 17.1 shows the inheritance tree for the optimization algorithms implemented in
Geneva at the time of writing.

Note that, at the time of writing, optimization algorithms comprise less than 15% of the entire code
base of Geneva. This means that it should be possible to add new algorithms with relative ease, as
not much code is involved.

2To be more exact, it would have restricted parallelization solely to the concurrent evaluation of candidate solutions.

168

The Geneva Library Collection 17.2. The Optimization Loop

17.2. The Optimization Loop

Optimization algorithms generally act in cycles, basing the actions of the current iteration on the pre-
ceding iterations’ results. It thus becomes possible to implement the “event loop” in an abstract base
class. The actual optimization algorithms then only need to implement those parts of the business
logic that are particular to their way of working. Listing 17.1 presents a rough sketch of this main loop.
The actual implementation is slightly more complex.

Note that, as a user, you will practically never have to deal directly with the main optimization
loop. A full description is provided here as we believe it may be important for users to understand
some of the inner workings of the Geneva library collection.

Listing 17.1: All algorithms implemented in the Geneva library share a common main loop.

1 / / [. . .]
2 / / Output any i n i t i a l i n f o rma t i on f o r the user
3 i f (r e p o r t I t e r a t i o n) doIn fo (INFOINIT) ;
4
5 / / I n i t i a l i z e the o p t i m i z a t i o n run
6 i n i t () ;
7
8 do {
9 / / The ac tua l business l o g i c

10 bes tCur ren tF i tness = cyc leLog ic () ;
11
12 / / We want to prov ide feedback to the user i n regu la r i n t e r v a l s .
13 i f (r e p o r t I t e r a t i o n && (i t e r a t i o n%r e p o r t I t e r a t i o n ==0)) doIn fo (INFOPROCESSING) ;
14
15 / / update the i t e r a t i o n counter
16 i t e r a t i o n ++;
17 } while (! h a l t ()) ;
18
19 / / Clean up
20 f i n a l i z e () ;
21
22 / / F i n a l i z e the i n f o output
23 i f (r e p o r t I t e r a t i o n) doIn fo (INFOEND) ;
24
25 / / [. . .]

We will go through the listing from top to bottom.

doInfo()

As one of the first actions of a new optimization run, the doInfo() function is executed. It may
be called in three modes – INFOINIT, INFOPROCESSING and INFOEND – which should be
self-explanatory. The function is virtual and may be overloaded by derived classes. By default, though,
it will try to execute a function in what is called an optimization monitor. Such monitors may be stored

169

Chapter 17. Common Traits of Optimization Algorithms The Geneva Library Collection

in the algorithm by the user and allow fine-grained control over what information is emitted. Chapter
25 discusses the topic of optimization monitors in detail.

Geneva provides default optimization monitors, which will print the best evaluation of the current itera-
tion, and will in addition output a script in ROOT-format (compare appendix C) that allows to visualize
the progress of the optimization run after it has terminated. The script will by default be called re-
sult.C.

The user may set the frequency of information emission using the setReportIteration()
function. When reportIteration is set to 0, no emission of information is taking place. When
set to 1, information will be emitted in every iteration; when set to 2, information will be emitted in
every second iteration, and so on.

init() and finalize()

Optimization algorithms get the opportunity to execute custom code right before and after the main
loop, so they can set up their internal data structures appropriately. This can be done by overloading
the corresponding init() and finalize() functions.

The do{ /* code */ } while(!halt()) loop

The most important call in the main loop happens right at the beginning. cycleLogic() is a
function that must be overloaded by derived optimization algorithms. It performs all actions particular
to a given algorithm and emits the best evaluation available when the function terminates. In the
next step, information is emitted, if required. Finally, the iteration counter is incremented. The loop
terminates when the halt() function returns true.

17.3. Geneva’s Halt Criteria

An important part of the main optimization loop in listing 17.1 is the call to the halt() function. It
wraps several halt criteria that may be combined or activated separately. It also wraps a custom halt
criterion that may be overloaded in derived classes. Setting halt criteria is practically the only situation
where users take direct influence on the main loop. The following halt criteria are implemented at the
time of writing:

• The user may set the maximum number of iterations allowed for an algorithm using the set-
MaxIteration() function. This is the most common halt criterion.

• When no further progress is observed in an optimization algorithm, a “stall counter” is increased.
The user may specify that the optimization run should be terminated when that counter has
reached a certain value. This is possible using setMaxStallIteration().

• It may be known in advance that a certain quality of a candidate solution is sufficient. So
the user may choose to set a quality threshold, beyond which the optimization run should be

170

The Geneva Library Collection 17.4. The Population Interface

terminated. This is possible using the setQualityThreshold() function.

• Finally, it may be known in advance that only a certain amount of time may have passed before
the optimization run must be terminated. So it is possible to set the maximum allowed time
with the setMaxTime() function. Note that this function expects an argument with the type
boost::posix_time::time_duration[27].

17.4. The Population Interface

It is generally assumed in the Geneva library that optimization algorithms act on collections (called
populations) of candidate solutions (called individuals in this chapter). Geneva parallelizes mainly
on the level of the parallel and distributed evaluation of candidate solutions. Hence, where needed,
the library extends existing algorithms such that they act on populations rather than single candidate
solutions. This allows to perform several evaluations in parallel.

17.4.1. Adding Candidate Solutions

In order to ease the addition of candidate solutions to optimization algorithms, GOptimization-
AlgorithmT<T> exhibits an STL interface to the user. Starting points in the parameter space
are thus simply added to algorithms using the usual push_back() function. Note that all interac-
tion happens through smart pointers. Listing 17.2 shows a simple example of adding an individual to
an evolutionary algorithm.

Listing 17.2: Individuals can be added to algorithms by means of the push_back() function
1 / / [. . .]
2 boost : : shared_ptr <GFunct ion Ind iv idua l > ind (new GFunc t ion Ind iv idua l ()) ;
3 boost : : shared_ptr <GSerialEA > ea (new GSerialEA ()) ;
4 ea . push_back (ind) ;
5 / / [. . .]

As discussed before, GOptimizationAlgorithmT<T> is designed to accept eitherboost-
::shared_ptr<GParameterSet> orboost::shared_ptr<GOptimizableEn-
tity> objects as the template parameter T, depending on the chosen optimization algorithm.

This ensures that Evolutionary Algorithms may accept all optimization algorithms implemented in the
Geneva library as “candidate solution”, this way implementing a form of meta-optimization. Likewise,
all of Geneva’s algorithms accept boost::shared_ptr<GParameterSet> objects, so
they can act on traditional individuals, implemented as collections of parameter objects.

17.4.2. Meaning of different positions in the vector

An algorithm may assign a particular meaning to a given position in a population. E.g., Geneva’s
swarm algorithms segment the population into neighborhoods which are identified by their position in
the vector. And the parents of evolutionary algorithms are located at the front of the collection.

171

Chapter 17. Common Traits of Optimization Algorithms The Geneva Library Collection

17.5. Checkpointing

As an experimental feature, the Geneva library allows to perform checkpointing. The state of an
optimization algorithm may be saved in regular intervals, or whenever a better candidate solution was
found than was known so far.

The interval in which checkpointing should take place can be set using the setCheckpointIn-
terval() function. setCheckpointBaseName() accepts the name of a directory and
the (base-)name of a file. Jointly they determine when and where checkpoint files are stored. The
current iteration and the quality of the best individual found are added to the base name in order to
distinguish checkpoint files. setCheckpointSerializationMode() allows to specify
whether checkpoints are stored in human-readable XML format or in the more compact binary format.
Finally, loadCheckpoint() allows to load existing checkpoint files, e.g. in order to continue an
optimization run.

The handling is identical for all implemented algorithms. Use with care!

172

Chapter 18.

Evolutionary Algorithms with Geneva

This chapter describes specific features relevant to Geneva’s implementation of Evolutionary Algo-
rithms. Geneva started as a pure implementation of this algorithm type, so this code is the longest
established in the library, and arguably also the most advanced.

Key points: (1) Many core features of Geneva’s Evolutionary Algorithms (“EAs”) are implemented in the base
classes GOptimizationAlgorithmT and GBaseParChildT (2) EAs can thus be treated like a
std::vector of (smart pointers to) candidate solutions (3) EAs also share the same halt criteria implemented
in GOptimizationAlgorithmT (4) Construction can happen either through the factory class GEvolu-
tionaryAlgorithmFactory, the various constructors, or through the Go2 class (compare chapter 24)
(5) The factory class will read all settings from a configuration file, so that no manual configuration is necessary
anymore (6) Apart from a (currently) fixed amount of parents and children, Geneva also allows dynamic growth of
a population (7) Note that the number of parents may in the future become variable in the context of multi-criterion
optimization (8) User-visible configuration options particularly relate to the duplication of parent individuals at the
beginning of a new iteration and the selection of new parents from the best results of the current iteration (9) Mu-
tation happens at the level of individuals and is only triggered by the EA-implementation. I.e., the chosen EA
strategy does not have to have knowledge about details of the mutation strategy. (10) Geneva’s implementation of
Evolutionary Algorithms can be neither characterized as Evolution Strategy nor as Genetic Algorithm, as different
parameter types may be mixed freely in the individuals

18.1. Looking Back at the Theory

Chapter 4 contains a full description of the theory behind Evolutionary Algorithms, as implemented in
the Geneva library. However, in order to make this chapter more self-contained, we want to shortly
review what was said there.

Evolutionary algorithms work through a sequence of duplication/recombination of parents, mutation
of the ensuing children and selection of the best children (and sometimes parents) to form a new set
of parents. Listing 18.1 shows again the basic work flow of both Evolution Strategies and Genetic
Algorithms. It is evident that it shares many features with the main loop implemented in the GOpti-
mizationAlgorithmT class (compare listing 17.1).

173

Chapter 18. Evolutionary Algorithms with Geneva The Geneva Library Collection

Figure 18.1.: Evolutionary Algorithm populations consist of p >=1 parents and c >=p children

Listing 18.1: Evolutionary Algorithms can be described in a few lines of code
1 / / [. . .]
2 do {
3 recombine () ; / / c reate copies o f parents or recombine t h e i r f ea tu res
4 mutate () ; / / modify i n d i v i d u a l parameters
5 s e l e c t () ; / / eva luate candidate s o l u t i o n s and s e l e c t the best
6
7 generat ion ++; / / Increment the generat ion counter
8 } while (! h a l t ()) ; / / Terminate o p t i m i z a t i o n when a h a l t c r i t e r i o n t r i g g e r s
9 / / [. . .]

Indeed, Geneva’s implementation of Evolutionary Algorithms does not use a separate main loop. As
one consequence, the same halt criteria implemented in GOptimizationAlgorithmT are
also available for Geneva’s Evolutionary Algorithms. Likewise, adding initial parents to the EA popula-
tion can be done using a std::vector<> interface, namely the push_back() function.

18.2. Construction of Evolutionary Algorithm Objects

Direct construction of Geneva’s Evolutionary Algorithm implementation can generally be done in one of
two ways, described below. A more indirect, but even easier possibility is also available through
the Go2 class, which will be described in chapter 24.

18.2.1. Using a Factory Class

A very convenient way is the construction through a factory class, called GEvolutionaryAlgo-
rithmFactory. Listing 18.2 shows an example.

174

The Geneva Library Collection 18.2. Construction of Evolutionary Algorithm Objects

Listing 18.2: Evolutionary Algorithms can be easily created through a factory class
1 #include " geneva / GEvo lu t ionaryA lgor i thmFactory . hpp "
2
3 i n t main (i n t argc , char ** argv) {
4 / / [. . .]
5 GEvo lu t ionaryAlgor i thmFactory
6 f (" . / con f i g / GEvo lu t ionaryAlgor i thm . json " , PARMODE_SERIAL) ;
7
8 / / The f a c t o r y w i l l emit a " smart base p o i n t e r " to Geneva ’ s EA implementat ion
9 / / The ac tua l ob jec t i s pre−conf igured wi th the des i red p a r a l l e l i z a t i o n mode

10 / / and the c o n f i g u r a t i o n opt ions conta ined i n the JSON f i l e
11 boost : : shared_ptr <GBaseEA> ea_ptr = f () ;
12
13 / / You can make manual c o n f i g u r a t i o n changes , i f des i red . Here we request
14 / / a popu la t ion s ize o f 100 , w i th 1 parent i n d i v i d u a l .
15 ea_ptr−>se tDe fau l tPopu la t i onS ize (100 ,1) ;
16 / / [. . .]
17
18 / / Add i n d i v i d u a l s
19 / / [. . .]
20 }

The factory will emit a smart pointer boost::shared_ptr<GBaseEA> to an object with the
desired parallelization mode (compare also chapter 23 and the class tree in figure 17.1), labelled as
either PARMODE_SERIAL, PARMODE_MULTITHREADED or PARMODE_BROKERAGE.

The object will be pre-configured using the settings in a configuration file, which is specified as argu-
ment to the factory constructor. Note that, if the configuration file is not found, the factory will try to
create a copy with default values below “./config”. It will throw an exception if the target path
isn’t found. The configuration file uses the easily readable JSON format for its settings. Listing 18.3
shows an excerpt from the actual configuration file.

Listing 18.3: Excerpt from a configuration file in JSON format used for Evolutionary Algorithms
1 {
2 / / [. . .]
3 " max I te ra t i on " :
4 {
5 "comment " : " The maximum al lowed number o f i t e r a t i o n s " ,
6 "comment " : " [GOpt imizat ionAlgor i thmT <ind_type >] " ,
7 " d e f a u l t " : " 1000 " ,
8 " value " : " 1000 "
9 } ,

10 " m a x S t a l l I t e r a t i o n " :
11 {
12 "comment " : " The maximum al lowed number o f i t e r a t i o n s w i thou t " ,
13 "comment " : " improvement0 means : no c o n s t r a i n t . " ,
14 "comment " : " [GOpt imizat ionAlgor i thmT <ind_type >] " ,
15 " d e f a u l t " : " 0 " ,
16 " value " : " 0 "
17 } ,

175

Chapter 18. Evolutionary Algorithms with Geneva The Geneva Library Collection

18 " r e p o r t I t e r a t i o n " :
19 {
20 "comment " : " The number o f i t e r a t i o n s a f t e r which a r e p o r t should be issued " ,
21 "comment " : " [GOpt imizat ionAlgor i thmT <ind_type >] " ,
22 " d e f a u l t " : " 1 " ,
23 " value " : " 1 "
24 } ,
25 / / [. . .]
26 }

Only changes to entries labelled value will have an effect. We suggest that you also read the
following sections to understand the options available through the configuration file. Each option
corresponds to a member function, through which the settings can also be made manually.

18.2.2. Through Constructors

Another obvious way is the usage of the default constructor. In this case you will directly construct
one of the EA objects, which are called GSerialEA (serial execution), GMultiThreadedEA
(for multi-threaded execution) and GBrokerEA (for communication through Geneva’s broker).

Construction always happens through the default constructor. Once the object has been created, you
will have to modify the default settings using the API available for the object. Many options and their
meanings are described below.

18.3. Specifying the Amount of Parents and Children

The most prominent duty in setting up an evolutionary algorithm is to let it know about the number of
parents and children, and, in effect, the total size of the population. Geneva’s evolutionary algorithms
do provide default values for these numbers. However, it is advisable to adapt the population size and
number of parents to the problem at hand.

This is done with the help of the setDefaultPopulationSize(std::size_t pop-
Size, std::size_t nParents) function. It accepts the size of the entire population as
its first argument, and needs information on the desired number of parents (as a fraction of the entire
population size).

The function can be called at any time before the start of the optimization loop. More commonly,
the required information will be read from a configuration file (in which case no manual setup of the
population size is required).

An obvious condition that must be met before the main optimization loop starts is that at least one in-
dividual has been registered with the evolutionary algorithm. Registered individuals will be interpreted
as parent individuals (up to the number of parents specified by the user).

Listing 18.4 shows how to specify the population size.

176

The Geneva Library Collection 18.3. Specifying the Amount of Parents and Children

Listing 18.4: Setting the population size is an important step

1 / / [. . .]
2 std : : s i z e _ t popSize = 100 , nParents = 1;
3
4 GSerialEA ea ;
5 ea . se tDe fau l tPopu la t i onS ize (popSize , nParents) ;
6 / / f u r t h e r popu la t ion setup
7
8 / / Adding an i n d i v i d u a l
9 boost : : shared_ptr <GFunct ion Ind iv idua l > ind (new GFunc t ion Ind iv idua l ()) ;

10 / / f u r t h e r setup of the i n d i v i d u a l
11 ea . push_back (ind) ;
12
13 / / S t a r t the o p t i m i z a t i o n run
14 ea . opt imize ()
15 / / [. . .]

18.3.1. Population Size and Dynamic Population Growth

It is impossible to make general recommendations for the amount of parents and children in a popula-
tion, as constraints also include the amount of available computing resources and the allotted time for
an optimization run. For real-life optimizations these may even be the all-dominant criteria.

Larger populations will yield a better coverage of the parameter space and are thus more likely to
succeed. On the other hand, where the population size is larger than the amount of compute units
available, the execution time might last longer than the allotted time frame. Hence one important
recommendation would be to choose a population size suitable for the available hardware.

So, if there are n compute nodes available for the optimization, a population with n children (resulting
in n evaluations per iteration1) might be suitable. Population sizes of less then 10 children might be
too small. So where not enough compute units are available, one might want to choose a multiple of
the number of units for the number of children.

On small systems, it can be useful to restrict the population size to small amounts of children in the
beginning and to increase the size gradually with the progress of the optimization run. Experience
shows that the progress of the optimization run is large in the beginning and smaller populations are
needed. However, as the algorithm is getting closer to the global optimum (or gets stuck in a local
optimum), larger population sizes are needed.

Geneva’s Evolutionary Algorithm allow to do this with the setPopulationGrowth(std::-
size_t growthRate, std::size_t maxPopulationSize) function, which ac-
cepts the growth rate per iteration as the first parameter, and the maximum allowed size of the pop-
ulation as the second. One would then set the initial population size to a comparatively small value
(e.g. 10) in the beginning, using the setDefaultPopulationSize() function, and allow
for a steady growth up to an upper limit.

1. . . past the first iteration . . .

177

Chapter 18. Evolutionary Algorithms with Geneva The Geneva Library Collection

Note that this feature does not help when there is a sufficient number of compute units available. One
should also keep quantization effects in mind, as described in section 8.5.5. However, when there is a
very large population (say: 400 children) and a small number of compute units (e.g. a quad-core Linux
box), this feature can significantly reduce the amount of compute time needed to achieve satisfactory
results.

18.4. Duplication Schemes

Looking back at listing 17.1, GOptimizationAlgorithmT::cycleLogic() (plus some
other functions of GOptimizationAlgorithmT) is overloaded in the EA implementation.
cycleLogic() then comprises the duplication/recombination, mutation and selection steps of
listing 18.1. We will concentrate on these three steps in this section, starting with the duplication of
parent individuals.

The duplication of parent individuals follows a possible recombination of two or more parents. It is an
alternative method for the creation of new children. In the duplication step, children are created as
identical copies of their parents, with the view of later mutation (described below in section 18.5). The
important decision taken in the selection step is thus, which parent is duplicated2.

VALUEDUPLICATIONSCHEME

In this duplication scheme, parents with a higher quality have a higher likelihood to be duplicated than
those with a lower quality. The degradation of the selection likelihood happens linearly.

Table 18.1 illustrates the effects of the VALUEDUPLICATIONSCHEME scheme. The underly-
ing example is the search for the minimum of a simple, 1000-dimensional parabola, performed in a
population with 5 parents and 95 children over 2000 generations in a pure evolutionary strategy.

Internally, an array of 5 values between 0 and 1 is calculated, of which each indicates the likelihood
for selection as a new parent. Parents with higher fitness get a higher likelihood for selection. In order
to achieve this, for each duplication step a random number between 0 and 1 is calculated. Starting
with the parent with the highest fitness, it is then compared in sequence to the thresholds assigned to
each parent. When the random number is found to be lower than the threshold of a given parent, this
parent is selected and copied into a new child.

RANDOMDUPLICATIONSCHEME

In the RANDOMDUPLICATIONSCHEME scheme, children are selected randomly from the avail-
able parents. Thus, parents with a high quality will not be favoured over parents with a lower quality.

2. . . which of course only plays a role if the user has asked for more than one parent in a population.

178

The Geneva Library Collection 18.5. Mutation

Parent position 0 1 2 3 4
Assigned threshold <= 0.34 <= 0.57 <= 0.75 <= 0.89 <= 1

Likelihood for selection 0.34 0.23 0.17 0.14 0.11
Actual selection numbers 65744 43508 32713 26238 21797 19000 (total)

% of total selections 0.35 0.23 0.17 0.14 0.11

Table 18.1.: Effects of the VALUEDUPLICATIONSCHEME duplication scheme

DEFAULTDUPLICATIONSCHEME

This is the default (thus recommended) duplication scheme for Geneva’s evolutionary algorithms that
you get when you do not specify a scheme manually. It will point to one of the other schemes shown
in this section. At the time of writing, RANDOMDUPLICATIONSCHEME is used as the default.

18.5. Mutation

The mutation step is governed mostly by the settings of adaptors and parameter objects, as described
in chapters 14 and 13. Geneva’s EA implementation simply triggers mutation of each parameter
object and leaves the details to each object. This way, optimization with Evolutionary Algorithms stays
generic and can be easily extended to other areas, such as meta-evolution.

There are consequently no user-accessible configuration options of the mutation step. Users should
rather take care to configure adaptors and parameter objects as desired.

18.6. Evaluation and Selection

The recombination and mutation steps result in new candidate solutions. Their quality needs to be
evaluated, before parents for the next iteration can be selected. Particularly the selection step involves
a number of configuration options that may be set by the user. We will list the selection schemes in
the following. Selection schemes may be chosen by the user with the setSortingScheme()
function3.

MUPLUSNU_SINGLEEVAL

As shown again in figure 18.1, populations in Evolutionary Algorithms consist of parent- and child-
individuals. MUPLUSNU_SINGLEEVAL describes a selection scheme, where new parents are
selected from both the preceding iteration’s parents and children, according to their fitness. This
involves sorting the entire population, so the best individuals are in the front of the population.

3The function name reflects the inner workings of the selection step, which is implemented as a sorting procedure.

179

Chapter 18. Evolutionary Algorithms with Geneva The Geneva Library Collection

As a consequence, the quality of the population will never decrease. On the other hand, experience
shows that, with this selection scheme, the optimization gets more easily stuck in a local optimum and
stagnates. This is also demonstrated on a concrete example in figure 9.3 on page 68.

Select this scheme with a call toea.setSortingScheme(MUPLUSNU_SINGLEEVAL),
where ea is an object of Geneva’s Evolutionary Algorithms implementation.

Note that MUPLUSNU_SINGLEEVAL only takes into account a single evaluation criterion. If
you want to perform multi-criteria optimization in the context of evolutionary algorithms, use the MU-
PLUSNU_PARETO selection scheme instead.

MUCOMMANU_SINGLEEVAL

In the MUCOMMANU_SINGLEEVAL scheme, new parents are selected from the last iteration’s
children only. The quality of the population may thus generally decrease from iteration to iteration, and
could in theory even diverge. However, there is always a selection pressure towards better solutions.

Experience shows that, overall, the optimization will make better progress than in the case of MU-
PLUSNU_SINGLEEVAL, so we generally recommend this selection scheme for single eval-
uation criteria. See again figure 9.3 for a concrete comparison between MUCOMMANU_SINGLE-
EVAL and MUPLUSNU_SINGLEEVAL.

Select this scheme with a call toea.setSortingScheme(MUCOMMANU_SINGLEEVAL),
where ea is an object of Geneva’s Evolutionary Algorithms implementation.

Use MUCOMMANU_PARETO instead of this selection scheme if you have more than one evaluation
criterion.

MUNU1PRETAIN_SINGLEEVAL

This selection scheme is a compromise between MUPLUSNU_SINGLEEVAL and MUCOMMANU-
_SINGLEEVAL, applicable to populations with more than one parent individual and a single evalu-
ation criterion for each individual.

Here, the best parent is always retained, unless a better child is found. Other parents of lower quality
are replaced by the best children. So the population’s quality will never decrease, but the optimization
procedure will nevertheless cover a wider range than in the case of MUPLUSNU_SINGLEEVAL
alone.

Select this scheme with a call to ea.setSortingScheme(MUNU1PRETAIN_SINGLE-
EVAL), where ea is an object of Geneva’s Evolutionary Algorithms implementation.

Note that we didn’t benchmar this procedure against MUCOMMANU_SINGLEEVAL yet, so that we
do recommend the latter.

180

The Geneva Library Collection 18.7. Mixing Parameter Types

MUPLUSNU_PARETO

Section 2.5 has introduced multi-criterion optimization in general and pareto optimization in particular.
If you have more than one evaluation criterion, MUPLUSNU_PARETO lets you switch on pareto
optimization, using the (µ+ν) selection scheme.

Select this scheme with a call toea.setSortingScheme(MUPLUSNU_PARETO), where
ea is an object of Geneva’s Evolutionary Algorithms implementation.

Note that, at the time of writing, this is still considered to be an experimental feature.

MUCOMMANU_PARETO

The MUCOMMANU_PARETO is the equivalent of MUCOMMANU_SINGLEEVAL for multiple eval-
uation criteria.

Select this scheme with a call to ea.setSortingScheme(MUCOMMANU_PARETO) ,
where ea is an object of Geneva’s Evolutionary Algorithms implementation.

Note that, at the time of writing, this is still considered to be an experimental feature.

18.7. Mixing Parameter Types

The most prominent representatives of Evolutionary Algorithms are Evolution Strategies and Genetic
Algorithms, dealing with either floating point variables or boolean collections. Geneva’s initial focus
was on Evolution Strategies, and this is arguably still the area of the library that is the most advanced.

Geneva’s individuals, however, allow to freely mix different parameter types, namely floating point,
boolean and integer values, in order to describe a given optimization problem. As it is each parameter
object that, through its adaptor, triggers mutation, Geneva’s implementation of Evolutionary Algorithms
can no longer be characterized as either “pure” Evolution Strategy or “pure” Genetic Algorithm. This
allows more freedom to express a given optimization problem.

181

Chapter 19.

Simulated Annealing with Geneva

Key points: (1) Many core features of Geneva’s Simulated Annealing implementation (“SAs”) are implemented
in the base class GOptimizationAlgorithmT and GBaseParChildT (2) SAs can thus be treated
like a std::vector of (smart pointers to) candidate solutions (3) SAs also share the same halt criteria im-
plemented in GOptimizationAlgorithmT (4) Construction can happen either through the factory class
GSimulatedAnnealingFactory, the default constructor, or through the Go2 class (compare chapter
24) (5) The factory class will read all settings from a configuration file, so that no manual configuration is necessary
anymore (6) In Geneva, Simulated Annealing is closely related to Evolutionary Algorithms (7) Particularities of
Simulated Annealimng are implemented as a special selection scheme in the context of Evolutionary Algorithms.
For this reason, both algorithms share a common base class (GBaseParChildT<T>). (8) Geneva’s SA
implementation differs from the usual setup in that it maintains parents and children, i.e., it may follow multiple
optimization paths. (9) Geneva’s SA implementation may thus perform optimization in parallel, whereas the “stan-
dard” SA algorithm always deals with a single candidate solution. (10) The “start temperature” and the degradation
strength form two particularly important settings of Simulated Annealing in Geneva

Traditionally, Evolutionary Algorithms and Simulated Annealing followed different strategies. However,
as explained in chapter 5, Geneva implements Simulated Annealing on the same foundation as Evo-
lutionary Algorithms. Both share a common base class: GBaseParChildT<T>.

In contrast to traditional SA-implementations, Geneva uses more than one candidate solution, though.
Simulated Annealing is then implemented as a special selection scheme. This setup allows us to
use Geneva’s infrastructure for parallelization, whereas traditionally only one candidate solution would
heve been created at a time.

Thanks to the common base class, many parameters of the Evoltionary Algorithm classes are also
available in Simulated Annealing. In particular, setting of population sizes remains an important duty.

There are two additional parameters that play an important role for Simulated Annealing. Their back-
ground is described in chapter 5, so we will just list the configuration options that may be changed by
the user.

ea.setT0(double) allows to set the start temperature – in a sense it it is a measure for the
entropy in the molten metal (compare chapter 5 if you need more information). Likewise, ea.set-
TDegradationStrength(double) allows to specify, how quickly the “molten metal” cools
down.

183

Chapter 19. Simulated Annealing with Geneva The Geneva Library Collection

Duplication / recombination work identical to Geneva’s Evolutionary Algorithms, as this is implemented
in one of the base classes. Likewise, Simulated Annealing offers the same parallelization modes as
all other optimization algorithms (serial, multithreaded or throuh the broker). Also, the same adaption/-
mutation operators may be used as for evolutionary algorithms.

Again, Geneva’s Simulated Annealing implementation may be instantiated through the Go2-class
(mnemonic “sa”), by direct calls to the constructors or with the help of the factory classGSimulated-
AnnealingFactory

184

Chapter 20.

Particle Swarm Optimization with Geneva

This chapter describes Geneva’s implementation of the Particle Swarm Optimization algorithm. This
is the first algorithm that was added, after Geneva’s Evolutionary Algorithm implementation was com-
pleted. At the time, it has triggered many architectural changes in the Geneva library collection, so
that it has now become far easier to add new algorithms.

Key points: (1) Swarm algorithms work through repetitive position updates of a population’s individuals (2) In-
dividuals are drawn to different extents towards a personal best solution, the best solution known so far in their
neighborhood and possibly also towards a globally best solution (3) Swarm algorithms, as implemented in Geneva,
act on floating point values only. Other parameter types of an individual will remain constant. (4) Construction
may either happen through a factory class or (with more work) through the default constructor (5) In comparison
to Evolutionary Algorithms, fewer configuration parameters need to be set

20.1. Looking Back at the Theory

Chapter 6 contains a description of the theory behind swarm algorithms (or “Particle Swarm Optimi-
zation”, or PSO for short), as implemented in the Geneva library. The algorithm described in listing
6.1 is fully implemented. We will aim to add the (far easier) algorithm shown in listing 6.2 in the near
future, as it can be implemented with the infrastructure that is already available.

In a nutshell, in the variant shown in listing 6.1, individuals are drawn to differing extents in each
iteration towards the personally best solution, a neighborhood-best and a globally best solution. The
movement of each individual also contains a component taking into account the best solutions of past
iterations. The “best” solutions are updated in each iteration. Figure 20.1 illustrates this situation.

Just like in the case of Evolutionary Algorithms, Geneva’s PSO implementation uses the main loop
implemented in the GOptimizationAlgorithmT class. Hence particularly the halt criteria
and main loop, as discussed in sections 17.2 and 17.3 can be reused. This reduces the amount of
code to be implemented for PSOs in Geneva.

185

Chapter 20. Particle Swarm Optimization with Geneva The Geneva Library Collection

Figure 20.1.: A swarm population is segmented into neighborhoods. In each iteration, individuals are
drawn to a different extent towards their respective personal best-, neighborhood best
and globally best solution known so far.

Like everywhere in Geneva, individuals can be added to the algorithm by means of thepush_back()
function. An important difference to Evolutionary Algorithms is that Geneva’s swarm algorithms only
act on floating point values.

20.2. Construction of PSO Objects

Construction of Geneva’s PSO objects can generally be done in one of two ways, which are described
below. A more indirect, but arguably even easier possiblity is also available through the Go2
class, which will be described in chapter 24.

20.2.1. Using a Factory Class

Geneva comprises a factory class for its swarm algorithms, called GSwarmAlgorithmFac-
tory. Its construction follows the same rules as already discussed for the GEvolutionaryAl-
gorithmFactory class. Listing 20.1 shows an example.

The factory class in listing 20.1 reads all data from a configuration file in JSON format (compare listing
18.3 for an example). This does not prevent you from making manual changes to the swarm algorithm
object, though.

186

The Geneva Library Collection 20.3. Neighborhood-Sizes and Numbers of Neighborhoods

Listing 20.1: Swarm algorithms can be easily created through a factory class
1 #include " geneva / GSwarmAlgorithmFactory . hpp "
2
3 i n t main (i n t argc , char ** argv) {
4 / / [. . .]
5 GSwarmAlgorithmFactory
6 f (" . / con f i g / GSwarmAlgorithm . json " , PARMODE_SERIAL) ;
7
8 / / The f a c t o r y w i l l emit a " smart base p o i n t e r " to Geneva ’ s swarm implementat ion
9 / / The ac tua l ob jec t i s pre−conf igured wi th the des i red p a r a l l e l i z a t i o n mode

10 / / and the c o n f i g u r a t i o n opt ions conta ined i n the JSON f i l e
11 boost : : shared_ptr <GBaseSwarm> swarm_ptr = f () ;
12
13 / / You can make manual c o n f i g u r a t i o n changes , i f des i red
14 swarm_ptr−>setSwarmSizes (3 , 2 0) ;
15 / / [. . .]
16
17 / / Add i n d i v i d u a l s
18 / / [. . .]
19 }

20.2.2. Through Constructors

Construction is of course also possible through the constructor. In this case you need to directly cre-
ate the objects for the chosen parallelization mode, called GSerialSwarm, GMultiThread-
edSwarm and GBrokerSwarm.

Construction always happens through the default constructor. Once the object has been created, you
may modify the default settings using the API provided. A number of important settings is described
below. It is recommended that you read it even if you choose the factory method. The information will
give you a better understanding of the configuration options available in the configuration file.

20.3. Neighborhood-Sizes and Numbers of Neighborhoods

Apart from choosing good start values, arguably the most important duty in setting up a Geneva swarm
algorithm is the specification of the number of neighborhoods, as well as the number of individuals
in them. The total size of the population can then be calculated from these two numbers. Note
that all neighborhoods are required to have the same size1. The population size may be set using
the setSwarmSizes(std::size_t, std::size_t) function. It accepts the number
of neighborhoods as its first argument, and the number of members in each neighborhood as the
second argument. Listing 20.2 shows how to specify the population size.

1While the size of each neighborhood may change in each iteration, e.g. due to missing responses in case of networked
execution, the neighborhoods have the ability to repair themselves. This way each iteration may start with a defined
number of candidate solutions in each neighborhood.

187

Chapter 20. Particle Swarm Optimization with Geneva The Geneva Library Collection

Listing 20.2: Setting the number of neighborhoods and members in them is an important step

1 / / [. . .]
2 std : : s i z e _ t nNeighborHoods = 5 , nNeighborhoodMembers = 20;
3
4 GSerialSwarm swarm ;
5 swarm . setSwarmSizes (nNeighborHoods , nNeighborhoodMembers) ;
6 / / f u r t h e r popu la t ion setup
7
8 / / Adding an i n d i v i d u a l
9 boost : : shared_ptr <GFunct ion Ind iv idua l > ind (new GFunc t ion Ind iv idua l ()) ;

10 / / f u r t h e r setup of the i n d i v i d u a l
11 swarm . push_back (ind) ;
12
13 / / S t a r t the o p t i m i z a t i o n run
14 swarm . opt imize ()
15 / / [. . .]

20.4. Setting Progress Factors

Listing 6.1 contains a number of progress factors, labelled w, c0, c1 and c2. They determine the
amount by which individuals are drawn towards their personal best, the corresponding neighborhood’s
best and the globally best solution respectively (factors c0-c2). w is a multiplicative factor for the
last iteration’s “velocity” (called Delta in listing 6.1). In a way, it can be compared with the strength
of an individual’s recollection of past “good” regions.

In the Geneva API, these factors can be set with the functions setCPersonal(double),
setCNeighborhood(double) and setCGlobal(double). The constant w can be
set with the functionsetCVelocity(double). Usual values forcPersonal andcNeigh-
borhood are 2. As all individuals are also drawn towards a global best, the constant w (or
cGlobal) also represents the magnitude of correlation between different neighborhoods. Small
values are recommended.

20.5. Constraints for Position Updates

If Delta in listing 6.1 gets too large, there is a danger that the swarm algorithm diverges. Hence the
size of the velocity may be constrained to a percentage of the allowed value range of the floating point
parameters constituting each individual2.

The function setVelocityRangePercentage(double percentage) allows to set
this constraint. The default value of percentage is 0.15. This means that the velocity update of
each floating-point parameter may not exceed 15% of its allowed value range.

2For unconstrained values, the initialization range is used instead of the allowed value range of a parameter.

188

The Geneva Library Collection 20.6. The Update Rule

Note that the algorithm takes care that all parameters are scaled down by the same factor (if at all
necessary), so that the velocity vector does not change direction.

20.6. The Update Rule

In Listing 6.1, a joint set of random numbers is calculated for all parameters of the individual. This is
called the “linear update rule” (expressed through the constant SWARM_UPDATERULE_LINEAR
in Geneva).

Another possibility is to calculate a new random number for each parameter and each constant. This
mode is called SWARM_UPDATERULE_CLASSIC in Geneva.

Users can choose between both modes with the function setUpdateRule(ur).

189

Chapter 21.

Gradient Methods with Geneva

This chapter describes gradient methods, as implemented in the Geneva library. In a nutshell, gradient
methods aim to utilize the shape of the quality surface, e.g. by seeking the path of steepest descent.
This implies a number of advantages and disadvantages. On the one hand, gradient methods will find
efficiently the next optimum. On the other hand, this algorithm type will usually not be able to leave
that optimum again to proceed towards the global optimum. Gradient methods can only be applied to
floating point parameters.

Key points: (1) Geneva implements a steepest descent algorithm (2) It works by calculating the difference quotient,
which requires small variations of each floating point variable (3) As a consequence, for each iteration at least n+1
evaluations are required, where n is the number of floating point parameters (4) Geneva allows several concurrent
starting points are allowed (5) Just three parameters describe the steepest descent: The number of concurrent
starting points, the size of the finite step into the direction of each parameter and the size of the step in the
approximate direction of steepest descent

21.1. Geneva’s Steepest Descent Implementation

The steepest descent algorithm, as implemented in Geneva, works by calculating the difference quo-
tient for all floating point variables. In other words, it makes a small step into the direction of each
floating point parameter and calculates the quality at the new position. As a result, n+1 calculations
are needed per iteration, where n is the number of floating point parameters1.

The algorithm then calculates the approximate direction of steepest descent from these values and
makes a step into this direction.

Geneva’s steepest descent implementation also allows to perform several optimizations in parallel.
The rationale behind this is that, given enough computing resources, several optimizations can be
performed in parallel. And due to the tendency of gradient methods to get stuck in local optima, it can
become important to start the optimization from a number of different starting points in parallel.

1This implies that for very large numbers of parameters, other algorithms are more efficient than gradient methods.

191

Chapter 21. Gradient Methods with Geneva The Geneva Library Collection

Figure 21.1.: In a gradient-descent population, the individuals representing the current position in each
iteration are followed by collections of individuals representing each of the floating point
parameters.

This feature results in a special layout of the gradient descent “population”. Note that it is not up to the
user to define the size of the population with gradient descents. Instead, the exact size is determined
by the number of floating point parameters in an individual and by the number of concurrent starting
points.

21.1.1. Population Layout and Addressing of Individuals

In Geneva’s gradient descent population, “child individuals”2 can be addressed in the following way:

c hi l d (i , j)=NS+i ∗NF P+ j (21.1)

where NS represents the number of simultaneous gradient descents performed by the algorithm, NF P

is the number of floating point parameters in the individual, i = [0,...,NS[and j = [0,...,NF P [are
indices used to address starting points and floating point parameters.

21.2. Construction of Gradient Descent Objects

Construction of Geneva’s gradient method objects can generally be done in one of two ways, which are
described below. A more indirect, but arguably even easier possibility is also available through
the Go2 class, which will be described in chapter 24.

21.2.1. Using a Factory Class

Geneva comprises a factory class for its gradient descent algorithms, called GGradientDes-
centFactory. Its construction follows the same rules as already discussed for the GEvolu-

2Individuals representing the step into the direction of each floating point parameter.

192

The Geneva Library Collection 21.2. Construction of Gradient Descent Objects

tionaryAlgorithmFactory class. Listing 21.1 shows an example.

Listing 21.1: Gradient Descent algorithms can be easily created through a factory class

1 #include " geneva / GGradientDescentFactory . hpp "
2
3 i n t main (i n t argc , char ** argv) {
4 / / [. . .]
5 GGradientDescentFactory
6 f (" . / con f i g / GGradientDescentAlgori thm . json " , PARMODE_SERIAL) ;
7
8 / / The f a c t o r y w i l l emit a " smart base p o i n t e r " to Geneva ’ s GD implementat ion .
9 / / The ac tua l ob jec t i s pre−conf igured wi th the des i red p a r a l l e l i z a t i o n mode

10 / / and the c o n f i g u r a t i o n opt ions conta ined i n the JSON f i l e
11 boost : : shared_ptr <GBaseGD> gd_ptr = f () ;
12
13 / / You can make manual c o n f i g u r a t i o n changes , i f des i red
14 gd_ptr−>se tNSta r t i ngPo in t s (1) ;
15 / / [. . .]
16
17 / / Add i n d i v i d u a l s
18 / / [. . .]
19 }

The factory class in listing 21.1 reads all data from a configuration file in JSON format (compare listing
18.3 for an example of JSON3). This does not prevent you from making manual changes to the swarm
algorithm object, though.

21.2.2. Through Constructors

Construction is of course also possible through the constructors. In this case you need to directly cre-
ate the objects for the chosen parallelization mode, called GSerialGD, GMultiThreadedGD
and GBrokerGD.

Construction may happen through the default constructor. Once the object has been created, you may
modify the default settings using the API provided. The most important settings are described below.
It is recommended that you read it even if you choose the factory method. The information will give
you a better understanding of the configuration options available in the configuration file.

Construction may also happen through a constructor that accepts various configuration parameters,
whose meaning will become clearer below. Use GSerialGD(nStartingPoints, fi-
niteStep, stepSize) constructor for this purpose (or GMultiThreadedGD, GBro-
kerGD).

3Note that the JSON code in listing 18.3 was generated for Evolutionary Algorithms, not Geneva’s Gradient Descents

193

Chapter 21. Gradient Methods with Geneva The Geneva Library Collection

21.3. Important Configuration Options

There are just three important configuration options for Geneva’s steepest descent implementation:
The number of simultaneous starting points (set with the setNStartingPoints(std::si-
ze_t np) function), the step size (set with the setStepSize(float sz)), and the size
of the finite step into each parameter’s direction (set with setFiniteStep(float fs)). The
step size represents the length of the step made into the direction of steepest descent. All three
options may also be passed directly to the constructor discussed in section 21.2.2.

194

Chapter 22.

Parameter Scans with Geneva

This chapter describes Geneva’s implementation of parameter scans.

Key points: (1) Geneva implements both random parameter scans and scans on a grid (2) The algorithm should
only be applied to small numbers of parameters, with a limited number of steps in each direction (3) The parameter
scan uses the same infrastructure as all other algorithms (4) Parallelization is thus seemless (5) Parameter scans
may be used to find suitable start valus for another optimization algorithm (6) They may also be used to test how
sensitive a result is to the variation of a given parameter (7) Scans may be specified through member functions or
through an easy text syntax, e.g. on the command line.

This algorithm is a relatively new addition to Geneva. The need for its implementation arose from a
situation, where users wanted to perform manual scans of parameter ranges in one or two dimensions.
Given Geneva’s ability to “chain” algorithms, parameter scans may however also help to find a good
starting point for other optimization algorithms. Another use-case is a check for the “sensitivity” of
an optimization result when a chosen parameter is varied. Users must be aware, however, that with
many parameters and many steps in each direction the time needed for the computation may quickly
become too high (compare section 2.3.1 for further information).

For this reason, Geneva comprises the ability to perform both random parameter scans or scans on
a grid. Scans may comprise all “native” parameter types of Geneva, such as integer, boolean and
floating point numbers. Parameters can be chosen by name or through their position in an individual,
and scan-ranges may be specified.

22.1. Construction of Parameter Scan Objects

Construction of Geneva’s parameter scan objects can generally be done in one of two ways, which are
described below. A more indirect, but arguably even easier possiblity is also available through
the Go2 class, which will be described in chapter 24. Go2 also makes available convenient
command line options for the specification of parameter scans.

195

Chapter 22. Parameter Scans with Geneva The Geneva Library Collection

Figure 22.1.: Parameter scans of the Rastrigin function (compare appendix A.5), on a regular 60x60
grid (left) and with random scan points (right)

22.1.1. Construction through a Factory Class

Geneva comprises a factory class for its parameter scan algorithms, called GParameterScan-
Factory. Its construction follows the same rules as already discussed for the GEvolution-
aryAlgorithmFactory class. Listing 22.1 shows an example.

Listing 22.1: Parameter scans can be easily created through a factory class
1 #include " geneva / GParameterScanFactory . hpp "
2
3 i n t main (i n t argc , char ** argv) {
4 / / [. . .]
5 GParameterScanFactory
6 f (" . / con f i g / ParameterScan . json " , PARMODE_SERIAL) ;
7
8 / / The f a c t o r y w i l l emit a " smart base p o i n t e r " to Geneva ’ s parameter scan
9 / / implementat ion . The ac tua l ob jec t i s pre−conf igured wi th the des i red

10 / / p a r a l l e l i z a t i o n mode and the c o n f i g u r a t i o n opt ions conta ined i n the JSON
11 / / f i l e
12 boost : : shared_ptr <GBasePS> ps_pt r = f () ;
13
14 / / You can make manual c o n f i g u r a t i o n changes , i f des i red
15 / / Here we ask f o r the f i r s t and second double parameter to be
16 / / scanned i n the range [−10:10] i n 100 steps each , r e s u l t i n g i n
17 / / 10000 eva lua t ions o f the o b j e c t i v e f u n c t i o n
18 ps_ptr−>setParameterSpecs (" d (0 , −10. , 10 . , 100) , d (1 , −10. , 10 . , 100) ") ;
19 / / [. . .]
20
21 / / Add i n d i v i d u a l s
22 / / [. . .]
23 }

196

The Geneva Library Collection 22.2. Random scan versus scan on a grid

The factory class in listing 22.1 reads all data from a configuration file in JSON format (compare
listing 18.3 for an example, albeit taken from Evolutionary Algorithms). This does not prevent you from
setting configuration options manually, though.

22.1.2. Direct Construction through Constructors

Construction is of course also possible through the constructor. In this case you need to directly create
the objects for the chosen parallelization mode, called GSerialPS, GMultiThreadedPS and
GBrokerPS. Construction always happens through the default constructor.

Once the object has been created, you may modify the default settings using the API provided. A
number of important settings is described below. It is recommended that you read it even if you
choose the factory method. The information will give you a better understanding of the configuration
options available in the configuration file, and you may always reconfigure selected options after the
object has been created using the options in the configuration file.

22.2. Random scan versus scan on a grid

Parameter scans can be performed in two modes: Either a regular grid is defined, with a predefined
number of steps in each direction, or the total number of evaluations may be specified, with a random
selection of scan points throughout the parameter space.

Figure 22.1 illustrates this possibility on the example of the Rastrigin function. A scan on a 60x60 grid
is shown on the left side of the plot, the right side shows a scan with random scan-points.

The option GBasePS::setScanRandomly(bool) allows to specify, whether the specified
parameters should be scanned randomly (true) or on a grid (false).

The number of scan points for random scans is determined through the population size and the max-
imum number of iterations. For scans on a grid the number of scan points is determined through a
“step” parameter of the scan-specification (22.3).

22.3. Specifying which parameters to scan

Specification of the parameters to be scanned happens through a string. Listing 22.1 already shows
one example: d(0, -10., 10., 100), d(1, -10., 10., 100) means: “scan
the first and second double parameter that was registered with the individual in the range [−10 : 10]
in 100 steps each”.

Note that “100 steps each” really means that for two variables 100∗100= 10000 evaluations are
performed, or with just three variables 1 million evaluations. This happens, as every value of parameter
0 needs to be combined with every value of parameter 1. You can leave out the number of steps for
random scans. Leaving it in the parameter specification for random scans will have no effect.

197

Chapter 22. Parameter Scans with Geneva The Geneva Library Collection

Instead of d for double, one may also use i for boost::int32_t and b for bool. Bound-
aries and the number of steps are specified just like in the case of double parameters, with the
obvious exception of boolean parameters. For these, you may indeed give boundaries and steps, but
they will have no effect. Leaving out the number of steps will lead to the usage of a default value for
all parameter types.

A specifyer s(10000) means: scan the entire parameter space (covering all registered variables
of an individual) with up to 10000 scan points. Combining this specification with additional parameter
specifications will lead to an error.

There may be cases where it is not clear what the order of parameters is. However, Geneva allows
to assign names to parameter objects. Its parameter scan uses this option to allow the following
syntax for variables: d(myVariableName, -10., 10., 100) and likewise for the other
parameter types. I.e., we can refer to the variables by name instead of the order of registration with
the individual. Referring to a variable by name that wasn’t registered with the individual will lead to an
error.

Geneva also comprises container types, with the GConstrainedDoubleCollection just
being one example. For these types, the following syntax is possible: d(myContainerName[3],
-10., 10., 100). This would scan the fourth entry (counting starts at 0, as is common in
C/C++) of myContainerName and scan it in 100 steps from −10 to 10.

198

Chapter 23.

Parallelization Modes

Geneva’s optimization algorithms can be executed in three different parallelization modes. This chap-
ter discusses the available options. Each mode is represented by a different class (compare figure
17.1). This design was chosen over a centralized implementation (e.g. in the GOptimization-
AlgorithmT class) in order to allow for additional parallelization to be implemented for specific
algorithms. Chapter 24 shows how to access the different parallelization modes more easily.

Key points: (1) Optimization algorithms are available in a serial, multi-threaded and brokered mode. (2) The
serial mode is mostly used for debugging purposes, but might also be useful if only a single license for an external
solver is available (3) In the case of networked execution, it is not necessary to ship all constant data together
with individuals. (4) Direct access to the three different execution modes of the available optimization algorithms
can be tedious, but gives very direct control over the inner workings of your optimization program. (5) Chapter 24
describes an easier option for choosing between different algorithms and execution modes.

There are three execution modes EXECMODE_SERIAL, EXECMODE_MULTITHREADED and
EXECMODE_BROKERAGE in Geneva, defined in the enum execMode. Using these constants
might be useful when reading the parallelization mode from a configuration file or the command line.

23.1. Serial Execution

This is the simplest execution mode. It is primarily meant for debugging, if you encounter problems
while integrating individuals with Geneva. Multithreading is reduced to the creation of random numbers
in this mode (and you can effectively switch off even this, if needed). Thus any race conditions still
encountered in serial execution mode are likely caused by your implementation rather than Geneva.
On the other hand, if the problems do go away when switching to serial mode, they might indeed be
related to Geneva. Make sure to file a bug report in this case (compare section 30.1.1).

In order to gain direct access to serial execution, each optimization implements classes like GSeri-
alEA,GSerialSwarm orGSerialGD. Other algorithms name the serial optimizer accordingly.
There are no specific configuration options (other than the general ones inherited fromGBaseXX and
its parent classes, of course) that apply to the GSerialXX family of classes.

199

Chapter 23. Parallelization Modes The Geneva Library Collection

23.2. Multithreaded Execution

This execution mode uses the Boost.Thread library to execute different parts of optimization algo-
rithms in parallel on the same system (without networking). As was discussed in chapter 8, the most
important task to be parallelized in optimization algorithms is the evaluation of candidate solutions.
This is the case for all implemented algorithms. Other parts of the algorithm might also be executed
in parallel, depending on the chosen algorithm. Evolutionary Algorithms, as one example, might also
perform the mutation step in parallel, as it is limited to each individual. Recombination, on the other
hand, is likely not worth parallelizing, due to the task switching overhead1.

In order to gain direct access to multithreaded execution, use one of the GMultiThreadedXX
class (such as GMultiThreadedEA, GMultiThreadedSwarm and GMultiThread-
edGD).

23.2.1. Configuation Parameters

Multithreaded execution adds one additional steering parameter over the options inherited from the
GBaseXX family of classes: In each GMultiThreadedXX class, the number of threads for
parallel execution of the optimization algorithm can be set with the setNThreads(boost::-
uint16_t) function, where boost::uint16_t is a 16 bit unsigned integer. Note that it is
usually not necessary to set the amount of threads by hand, as Geneva tries to determine the number
of execution units (e.g. physical cores, when hyper-threading is disabled) in your machine2. This is
usually a good value for the number of threads as well. Where Geneva fails to determine that number,
however, the number of threads is set to the default value of 2. When this happens, you might want to
set the number of threads by hand, using this function.

Specifying 0 as the parameter of setNThreads(boost::uint16_t) will switch on auto-
matic detection of the number of compute units. Any other value (>0, of course, as the parameter is
unsigned) will switch automatic detection off.

23.3. Brokered Execution

Brokered execution uses the services of the GBrokerConnector2T<> class described in sec-
tion 32.5 to submit individuals to the broker. Depending on the consumer which has been plugged
into the broker, execution may either happen locally or at a remote site (such as a different node of a
cluster or a worker node in a compute cloud). Both multi-threaded and serial execution are available
as consumers locally – the latter mostly for debugging purposes3.

1Note that, for the sake of simplicity and like all other algorithms, EA currently only parallelizes on the level of the
evaluation. This has allowed to simplify the class structure.

2Note that it cannot distinguish between physical and virtual cores – a system with hyperthreading enabled will appear to
Geneva as having more than the physical number of cores

3Another usage scenario might be a situation where you only have a single license for an external solver

200

The Geneva Library Collection 23.4. Direct Instantiation of Algorithms

As the “brokered” classes (such as GBrokerEA, GBrokerSwarm and GBrokerGD) derive
from the GBrokerConnector2T<> class, the options added over what has already been imple-
mented in the GBaseXX familiy of classes is limited the options of GBrokerConnector2T<>.
This class is described in detail in section 32.5.

Of particular importance is the setSubmissionReturnMode() function. Depending in the
chosen policy, the object will wait indefinitely for items of the current submission to return, or will
timeout and optionally resubmit unprocessed items. Usually, this setting is specific to the chosen
optimization algorithm4, so that users do not need to care for this setting.

23.3.1. Loading Static Data at a Remote Site

The broker was initially designed only to deal with remote execution. In this usage scenario, individuals
are serialized and shipped to a remote site. Serialization is computationally quite expensive, and the
transfer particularly over a wide area connection costs time. Hence one will try to minimize the amount
of data that needs to be serialized.

Think of an individual that represents a particular state of a feed-forward neural network. The individual
will hold data for the weights between its nodes (compare section 9.3 and figure 9.5), which certainly
needs to be shipped to the remote site for the evaluation, as they are different for each individual.
However, the evaluation will also crucially depend on the training data. As this data is the same for
each individual, the question must be asked how shipping it to the remote site can be avoided.

The templated network clients implemented in the Geneva’s Courtier library therefore require that
work item implement the loadConstantData() function. It accepts an object of the same
type and loads – pretty much in the style of a copy constructor – any data specified by the user.
As this is highly application-specific, users wishing to use this feature need to overload the (emtpy)
loadConstantData() function. Once done, they can register a “constant” work item with the
class handling client interactions. They also need to make sure that constant data in their individuals
isn’t serialized. This simply means omitting constant data in the serialize() function.

23.4. Direct Instantiation of Algorithms

We have now seen that different parallelization modes are implemented in different classes. This has
the consequence that switching between different modes (for example with a command line parame-
ter) can be somewhat tedious. The situation becomes worse when we also want to switch between
different optimization algorithms. We will explain in chapter 24, how this can be avoided.

On the other hand, direct interaction with the available optimization algorithms will provide you with
a very direct control of the actions of your optimization program. Hence we want ot explain in this
section what needs to be done to achieve this. The code is based on the GDirectEA example in
the Geneva distribution.

4e.g., gradient methods require a full return of work items

201

Chapter 23. Parallelization Modes The Geneva Library Collection

Listing 23.1 shows how to directly instantiate the different parallelization modes of Geneva’s Evolu-
tionary Algorithms. The variables in the example use tell-tale names, so we do not explain them
further.

Listing 23.1: Direct instantiation of different parallelization modes of Geneva’s EA Implementation
1 / * /
2 / / I f t h i s i s a c l i e n t i n networked mode, we can j u s t s t a r t the l i s t e n e r and
3 / / r e t u r n when i t has f i n i s h e d
4 i f (EXECMODE_BROKERAGE== pa ra l l e l i za t i on Mod e && ! serverMode) {
5 boost : : shared_ptr <GAsioTCPClientT<GParameterSet> >
6 p (new GAsioTCPClientT<GParameterSet >(ip , boost : : l e x i c a l _ c a s t <s td : : s t r i n g >(po r t))) ;
7
8 p−>setMaxSta l ls (maxStal ls) ; / / 0 equals an i n f i n i t e number o f s t a l l e d r e t r i e v a l s
9 p−>setMaxConnectionAttempts (maxConnectionAttempts) ;

10
11 / / S t a r t the ac tua l processing loop
12 p−>run () ;
13
14 return 0;
15 }
16
17 / * /
18 / / We can now s t a r t c rea t i ng popu la t ions . We r e f e r to them through the base c lass
19
20 / / This smart p o i n t e r w i l l hold the d i f f e r e n t popu la t ion types
21 boost : : shared_ptr <GBaseEA> pop_ptr ;
22
23 / / Create the ac tua l popu la t ions
24 switch (p a ra l l e l i za t i on M o d e) {
25 / /−−
26 case EXECMODE_SERIAL: / / S e r i a l execut ion
27 {
28 / / Create an empty popu la t ion
29 pop_ptr = boost : : shared_ptr <GSerialEA >(new GSerialEA ()) ;
30 }
31 break ;
32
33 / /−−
34 case EXECMODE_MULTITHREADED: / / Mu l t i−threaded execut ion
35 {
36 / / Create the mu l t i−threaded popu la t ion
37 boost : : shared_ptr <GMultiThreadedEA> popPar_ptr (new GMultiThreadedEA ()) ;
38
39 / / Populat ion−s p e c i f i c s e t t i n g s
40 popPar_ptr−>setNThreads (nEvaluat ionThreads) ;
41
42 / / Assignment to the base p o i n t e r
43 pop_ptr = popPar_ptr ;
44 }
45 break ;
46

202

The Geneva Library Collection 23.4. Direct Instantiation of Algorithms

47 / /−−
48 case EXECMODE_BROKERAGE: / / Execut ion l i k e l y w i th networked consumer
49 {
50 / / Create a network consumer and enro l i t w i th the broker
51 boost : : shared_ptr <GAsioTCPConsumerT<GParameterSet> >
52 gatc (new GAsioTCPConsumerT<GParameterSet >(por t , 0 , serMode)) ;
53 GBROKER(Gem: : Geneva : : GParameterSet)−> enro l (gatc) ;
54
55 i f (addLocalConsumer) { / / This i s mainly f o r t e s t i n g and benchmarking
56 boost : : shared_ptr <GBoostThreadConsumerT<GParameterSet> >
57 gbtc (new GBoostThreadConsumerT<GParameterSet > ()) ;
58 gbtc−>setNThreadsPerWorker (nEvaluat ionThreads) ;
59 GBROKER(Gem: : Geneva : : GParameterSet)−> enro l (gbtc) ;
60 }
61
62 / / Create the ac tua l broker popu la t ion
63 boost : : shared_ptr <GBrokerEA> popBroker_ptr (new GBrokerEA ()) ;
64
65 / / Assignment to the base p o i n t e r
66 pop_ptr = popBroker_ptr ;
67 }
68 break ;
69
70 / /−−
71 defaul t :
72 {
73 glogger
74 << " In main () : Received i n v a l i d p a r a l l e l i z a t i o n mode "
75 << p a ra l l e l i za t i o nMo de << std : : endl
76 << GEXCEPTION;
77 }
78 break ;
79 }
80
81 / * /
82 / / Create a f a c t o r y f o r GFunc t ion Ind iv idua l ob jec ts and perform
83 / / any necessary i n i t i a l work .
84 GFunc t ion Ind iv idua lFac to ry g f i (" . / con f i g / GFunc t ion Ind iv idua l . json ") ;
85
86 / / Create the f i r s t se t o f parent i n d i v i d u a l s w i th random i n i t i a l i z a t i o n
87 std : : vector <boost : : shared_ptr <GFunct ion Ind iv idua l > > p a r e n t I n d i v i d u a l s ;
88 for (s td : : s i z e _ t p = 0 ; p<nParents ; p++) {
89 p a r e n t I n d i v i d u a l s . push_back (g f i . get <GFunct ion Ind iv idua l > ()) ;
90 }
91
92 / * /
93 / / Create an ins tance of our o p t i m i z a t i o n moni tor
94
95 boost : : shared_ptr <progressMoni tor > / / demo f u n c t i o n i s on ly known to i n d i v i d u a l
96 pm_ptr (new progressMoni tor (p a r e n t I n d i v i d u a l s [0]−>getDemoFunction ())) ;
97

203

Chapter 23. Parallelization Modes The Geneva Library Collection

98
99 pm_ptr−>setProgressDims (xDim , yDim) ;

100 pm_ptr−>setFol lowProgress (fo l lowProgress) ; / / Sha l l we take snapshots ?
101 pm_ptr−>setXExtremes (g f i . getMinVar () , g f i . getMaxVar ()) ;
102 pm_ptr−>setYExtremes (g f i . getMinVar () , g f i . getMaxVar ()) ;
103
104 / * /
105 / / Now we have s u i t a b l e popu la t ions and can f i l l them wi th data
106
107 / / Add i n d i v i d u a l s to the popu la t ion . Many Geneva classes , such as
108 / / the o p t i m i z a t i o n classes , f ea tu re an i n t e r f a c e very s i m i l a r to s td : : vec to r .
109 for (s td : : s i z e _ t p = 0 ; p< p a r e n t I n d i v i d u a l s . s i ze () ; p++) {
110 pop_ptr−>push_back (p a r e n t I n d i v i d u a l s [p]) ;
111 }
112
113 / / Spec i fy some general popu la t ion s e t t i n g s
114 pop_ptr−>setPopu la t ionS izes (popula t ionSize , nParents) ;
115 pop_ptr−>se tMax I te ra t i on (max I te ra t ions) ;
116 pop_ptr−>setMaxTime (boost : : pos ix_t ime : : minutes (maxMinutes)) ;
117 pop_ptr−>s e t R e p o r t I t e r a t i o n (r e p o r t I t e r a t i o n) ;
118 pop_ptr−>setRecombinationMethod (rScheme) ;
119 pop_ptr−>setSortingScheme (smode) ;
120 pop_ptr−>r e g i s t e r O p t i m i z a t i o n M o n i t o r (pm_ptr) ;
121
122 / / Perform the ac tua l o p t i m i z a t i o n
123 pop_ptr−>opt im ize () ;
124
125 / * /
126 / / Do something wi th the best i n d i v i d u a l found
127 boost : : shared_ptr <GFunct ion Ind iv idua l > p =
128 pop_ptr−>ge tBes t I nd i v i dua l <GFunct ion Ind iv idua l > () ;
129
130 / / Here you can do something wi th the best i n d i v i d u a l (" p ") found .
131 / / We simply p r i n t i t s content here , by means of an operator << implemented
132 / / i n the GFunc t ion Ind iv idua l code .
133 std : : cout
134 << " Best r e s u l t found : " << std : : endl
135 << p << std : : endl ;
136
137 / * /
138 / / Terminate
139 return (0) ;

The code has been taken from the main() function.

204

Chapter 24.

Unified Access to Optimization Algorithms

We have seen in section 23.4 that the direct instantiation of optimization algorithms can be somewhat
tedious, as different parallelization modes have been implemented as seperate classes1. The situation
gets worse if a user wants to be able to switch between different algorithms, e.g. using a command
line argument or a setting in a configuration file.

This chapter introduces the Go2 class, which not only facilitates access to the implemented algo-
rithms in all of their parallelization modes, but in addition also allows to “chain” algorithms, making the
best result of one algorithm the input of another algorithm. Go2 also handles command line argu-
ments, which it collects from the available consumers and optimization algorithms. All of this makes
the handling of Geneva’s algorithms far easier in every-day usage scenarios.

Key points: (1) The Go2 class provides users with easy access to the implemented algorithms with just a few
lines of code. (2) Individuals can be added to Go2 with the push_back() function or through the provision
of a factory class (3) More than one optimization algorithm can be added to Go2 with the & sign (4) Algorithms
can either be added through (smart-pointers to) optimization algorithm objects or through placeholders (5) Where
placeholders are used, the parallelization mode can be set dynamically on the command line.

In a way, this chapter is the culmination point of the entire manual, as it is the Go2 class that provides
users with the easiest access to Geneva’s optimization capabilities and even adds further functionality,
such as the chaining of algorithms. Still, the description will be relatively short, as Go2 does most
work automatically for you behind the scenes.

24.1. The main() function

With Go2, the main() function can be reduced to just a few lines of code. Listing 24.1 shows a
complete example. It should be very visible that it significantly reduces the code overhead compared
to listing 23.12.

1. . . with the rationale that a “one size fits all” approach to parallelization for all available optimization algorithms would
lead to the neglection of many opportunities.

2which doesn’t even show the entire main() function . . .

205

Chapter 24. Unified Access to Optimization Algorithms The Geneva Library Collection

Listing 24.1: A typical main() function, as implemented with the Go2 class

1 #include " geneva / Go2 . hpp "
2 #include " geneva−i n d i v i d u a l s / GFunc t ion Ind iv idua l . hpp "
3
4 using namespace Gem: : Geneva ;
5
6 i n t main (i n t argc , char ** argv) {
7 Go2 go (argc , argv , " . / con f i g /Go2 . json ") ;
8
9 / /−−−

10 / / C l i e n t mode
11 i f (go . c l ientMode ()) {
12 return go . c l ien tRun () ;
13 } / / Execut ion w i l l end here i n c l i e n t mode
14
15 / /−−−
16 / / As we are dea l ing w i th a server , r e g i s t e r a s i g n a l handler t h a t a l lows us
17 / / to i n t e r r u p t execut ion " on the run "
18 s i g n a l (SIGHUP, GObject : : sigHupHandler) ;
19
20 / /−−−
21 / / Create a f a c t o r y f o r GFunc t ion Ind iv idua l ob jec ts and perform i n i t i a l work .
22 boost : : shared_ptr <GFunct ion Ind iv idua lFac to ry >
23 g f i _ p t r (new GFunc t ion Ind iv idua lFac to ry (" . / con f i g / GFunc t ion Ind iv idua l . json ")) ;
24
25 / / Add a content c rea to r so Go2 can generate i t s own i n d i v i d u a l s , i f necessary
26 go . reg i s te rCon ten tCrea to r (g f i _ p t r) ;
27
28 / / Add a d e f a u l t o p t i m i z a t i o n a lgo r i thm to the Go2 ob jec t . This i s o p t i o n a l .
29 / / Indeed " ea " i s the d e f a u l t s e t t i n g anyway . However , i f you do not l i k e i t , you
30 / / can r e g i s t e r another d e f a u l t a lgo r i t hm here , which w i l l then be used , unless
31 / / you spec i f y o ther a lgo r i thms on the command l i n e . You can also add a smart
32 / / p o i n t e r to an o p t i m i z a t i o n a lgo r i thm here ins tead of i t s mnemonic .
33 go . r e g i s t e r D e f a u l t A l g o r i t h m (" ea ") ;
34
35 / / Perform the ac tua l o p t i m i z a t i o n
36 boost : : shared_ptr <GFunct ion Ind iv idua l > p
37 = go . opt imize <GFunct ion Ind iv idua l > () ;
38
39 / / Here you can do something wi th the best i n d i v i d u a l (" p ") found .
40 std : : cout << " Best r e s u l t found : " << std : : endl << p << std : : endl ;
41 }

24.1.1. Go2 Instantiation and Client Mode

We will now go through this example in detail. In the first line, the Go2 go object is instantiated. It
will read some configuration options from file and makes sure to parse the command line for further
options. Command line options are not only taken from Go2 itself, but are assembled from registered

206

The Geneva Library Collection 24.1. The main() function

optimization algorithms and consumers. Their addition happens behind the scenes, without the need
for user-interaction.

Note that, if ./config/Go2.json does not exist, it will be automatically created for you, pro-
vided that a directory ./config/ exists. Go2 will not create the directory for you, as this would
imply the danger of cluttering your file system with unwanted directories (imagine a very long path).
An existing configuration file with the same name will be kept intact.

We then ask whether the program has been called in client- or server-mode3. In client-mode, the
program will try to contact the server behind the scenes. No user-interaction is needed for this. Users
will need to provide the IP and port of the server on the command-line, though. A typical call to a
networked client with the main() function from listing 24.1 is shown in listing 24.4.

Listing 24.2: Executing a networked client with the main() function of listing 24.1

1 / home / developer > . / myNetworkedClient −−c l i e n t −−i p =192.168.0.1 −−po r t =12345

This assumes that the server can be reached via the ip 192.168.0.1 with port 12345. The -client
switches on the client mode. The program can thus easily be submitted to worker nodes in a batch
submission system, and can also be run over wide-area networks. The only condition is that the server
can be reached from the client, when it initiates a connection. Geneva works in pull mode.

A networked client will return from main, once go.clientRun() returns.

24.1.2. Installing a signal handler

It is now possible to interrupt an optimization run by sending it a SIGHUP signal on Linux (and most
Unix-systems) or a CTRL_BREAK_EVENT on Microsoft Windows. A signal handler for both events
can be installed transparently by adding the following line to the start of your main() function:

Listing 24.3: Registering a signal handler to cathc hang-up signals

1 s i g n a l (G_SIGHUP, GObject : : sigHupHandler) ;

Here, G_SIGHUP is a define for SIGHUP on Linux and for CTRL_BREAK_EVENT on Microsoft
Windows. On a Linux-system, it is then possible to interrupt execution using the command

Listing 24.4: Terminating a Geneva run, when a signal handler was installed

1 / home / developer > k i l l a l l −HUP myNetworkedClient

Note that the signal is evaluated only once per evaluation. Currently running evaluations of a given
iteration will not be interrupted. However, Go2will make an attempt to recover all data up to the current
iteration, when the HUP-signal was received. See 01_GSimpleOptimizer for an example on
how to register the signal handler.

3Client-mode may e.g. refer to a networked client, using Boost.Asio for the transfer of data.

207

Chapter 24. Unified Access to Optimization Algorithms The Geneva Library Collection

24.1.3. Content Creators and Factories

We have discussed factory classes in section 33.4. We now use the factory made available with the
GFunctionIndividual individual, which comes together with the Geneva distribution. The
factory again reads its configuration options from a configuration file.

Go2 accepts so called “content creators”, which are just factories for individuals. Once registered,
Go2 takes care itself of adding the required number of individuals to its algorithms.

As we can create any desired number of GFunctionIndividual objects just through a call to
gfi() (where gfi is the name of the GFunctionIndividualFactory object) and Go2
uses a std::vector<> interface, we could also have added the individuals to the Go2 object
with calls to go.push_back(gfi()) manually.

24.1.4. Creating and adding an Optimization Algorithm Object

We are now ready to throw a first optimization algorithm into the cauldron. The following options are
available:

• We could do nothing. Go2 uses Evolutionary Algorithms as default algorithm, when no other
algorithms were specified. Note that we may change the default algorithm with a call to the
Go2::registerDefaultAlgorithm() function, which accepts a mnemonic for
the chosen default algorithm (e.g. “ea” for Evolutionary Algorithms or “swarm” for particle swarm
optimization). This is what we have done in listing 24.1.

• We could have added an algorithm like this: go & “swarm”. This would add a swarm
algorithm instead of an evolutionary algorithm. Note that, instead of a mnemonic, we may also
add smart pointers to optimization algorithms to Go2 using the “&” operator. This allows us a
stronger control over the algorithms that were added to Go2.

• We may add additional algorithms on the command line, again using the mnemonics. See the
-help switch of Go2. Note that algorithms added in main() take precedence over those
added on the command line.

Just like in the case of the Go2 class itself, configuration files will be created for you automatically in
the specified path, if they do not exist yet for a given optimization algorithm. Default values will then
be used.

24.1.5. Peforming the actual Optimization

We can now start the actual optimization run, with a call to go.optimize<GFunctionIndi-
vidual>(). It will return a smart pointer to the best GFunctionIndividual object found.
Note that Geneva internally uses the GObject base class of GFunctionIndividual for all
of its actions, which is however automatically converted to the target class for you.

Once we have received the final result, we can further process it or output results, depending on what
the user wishes to do in this part of the program.

208

The Geneva Library Collection 24.2. Adding further Algorithms

24.1.6. Go2’s Help Mode

Go2 offers you some built-in help for its command-line options. Simply call the program with -help
on the command line.

24.2. Adding further Algorithms

We have so far only used a single optimization algorithm. You can do much more with, Go2, though.
As one example, the class allows you to “chain” different optimization algorithms. The best result of
one algorithm then becomes the input of the next. Listing 24.5 shows an example.

Listing 24.5: Optimization algorithms can be chained using the & sign.

1 / / Create an e vo l u t i o n a ry a lgo r i t hm i n brokerage mode
2 GEvo lu t ionaryAlgor i thmFactory
3 ea (" . / con f i g / GEvo lu t ionaryAlgor i thm . json " , EXECMODE_BROKERAGE) ;
4
5 / / Create a g rad ien t descent i n mu l t i−threaded mode
6 GGradientDescentFactory
7 gd (" . / con f i g / GGradientDescentFactory . json " , EXECMODE_MULTITHREADED) ;
8
9 / / Chain the two a lgor i thms

10 go & ea () & gd () ;
11
12 / / Perform the ac tua l o p t i m i z a t i o n
13 boost : : shared_ptr <GFunct ion Ind iv idua l > p = go . opt imize <GFunct ion Ind iv idua l > () ;

As we can see, it is possible to chain algorithms with the help of the & operator. Algorithms do not
even have to share the same parallelization mode.

Note that ea() and gd() emit boost::shared_ptr<> smart pointers to algorithms. You
could thus also have captured the output of ea() or gd() and perform some further, manual
configuration work with them. The smart pointers can then again be added to go with the & operator.

But it can get even simpler. If you do not want to do any manual configuration of the optimization algo-
rithms and rather modify the options in the configuration files, you can replace the explicit instantiation
of algorithms with a placeholder. If we add in a swarm algorithm just for kicks (which might not make
sense), then listing 24.5 becomes

Listing 24.6: Listing 24.5 can be further simplified when using place holders

1 / / Chain the a lgor i thms
2 go & " ea " & "swarm" & " gd " ;
3 / / Perform the ac tua l o p t i m i z a t i o n
4 boost : : shared_ptr <GFunct ion Ind iv idua l > p = go . opt imize <GFunct ion Ind iv idua l > () ;

This has the big advantage that you can choose the parallelization mode dynamically on the
command line, using the -p switch (compare the -help switch for all available options). Note

209

Chapter 24. Unified Access to Optimization Algorithms The Geneva Library Collection

that there is also a slight catch in that you cannot currently assign different parallelization modes to
different algorithms from the command line.

You can also choose to mix both methods by creating and configuring some algorithms manually, as
shown in listing 24.5 and adding others with the placeholders shown in listing 24.6. A parallelization
mode specified on the command line will then only apply to those algorithms that were added with
place holders.

210

Chapter 25.

Optimization Monitors

The previous chapters have concentrated on means to optimize a given problem. Over the course of
an optimization run, Geneva emits information, such as the best result of a given iteration. Geneva
also emits a file in ROOT format which can be used to visualize the progress of the optimization run
(compare figure 9.3 and appendix C).

There are times, however, where this information isn’t enough, and you want to get a deeper insight
into what happens inside of the algorithm during the optimization, or emit additional intermediate
results. For this purpose, Geneva implements the GOptimizationMonitorT class, as well
as derivatives for each implemented optimization algorithm. They can be registered with the algorithm
and will henceforth emit the desired information.

This has been used for example to write out the best picture during each iteration in the Mona Lisa
example of section 9.1.1 (compare also figures 9.1 and 9.2). This chapter describes how to create a
custom optimization monitor.

Key points: (1) A doInfo() function is called by GOptimizationAlgorithmT<> in different modes
before and after the optimization cycle, and for every iteration (2) doInfo() uses the services of the GOp-
timizationMonitorT<> class and its derivatives (3) Custom optimization monitors may be loaded into
the optimization algorithm. (4) They have access to all public information of the current algorithm (5) Default opti-
mization monitors exist for all “stock” optimization algorithms implemented in Geneva. (6) “Pluggable optimization
monitors” allow easy access to individual-specific information (7) A number of predefined pluggable optimization
monitors exist

25.1. Internal Architecture

We want to look back at listing 17.1, which has been reproduced in this chapter in listing 25.1. Three
phases can be distinguished: Initialization, processing and finalization. Correspondingly, the base
class of all optimization algorithms, GOptimizationAlgorithmT<>, contains a member
function doInfo(), which can be called in the three modes INFOINIT, INFOEND and INFO-
PROCESSING. The first two modes are only called once, INFOPROCESSING is called in every

211

Chapter 25. Optimization Monitors The Geneva Library Collection

iteration. doInfo() is responsible for emitting (possibly user-defined) information on the progress
of the optimization run.

Listing 25.1: doInfo() is called before and after the main loop, as well as for every iteration.

1
2 / / [. . .]
3 / / Output any i n i t i a l i n f o rma t i on f o r the user
4 i f (r e p o r t I t e r a t i o n) doIn fo (INFOINIT) ;
5
6 / / I n i t i a l i z e the o p t i m i z a t i o n run
7 i n i t () ;
8
9 do {

10 / / The ac tua l business l o g i c
11 bes tCur ren tF i tness = cyc leLog ic () ;
12
13 / / We want to prov ide feedback to the user i n regu la r i n t e r v a l s .
14 i f (r e p o r t I t e r a t i o n && (i t e r a t i o n%r e p o r t I t e r a t i o n ==0)) doIn fo (INFOPROCESSING) ;
15
16 / / update the i t e r a t i o n counter
17 i t e r a t i o n ++;
18 } while (! h a l t ()) ;
19
20 / / Clean up
21 f i n a l i z e () ;
22
23 / / F i n a l i z e the i n f o output
24 i f (r e p o r t I t e r a t i o n) doIn fo (INFOEND) ;
25
26 / / [. . .]

Geneva has been built as modular as possible, so many parts of the library can be adapted to the
users’ needs. Consequently, doInfo() does not emit any information itself1, but uses the help of
the GOptimizationMonitorT<> class template.

Optimization algorithms can store boost::shared_ptr<> smart pointers, holding GOpti-
mizationMonitorT<> objects or their derivatives. doInfo(mode)will callGOptimiza-
tionMonitorT<>::informationFunction(...), which receives the desired infor-
mation mode (INFOINIT, INFOEND and INFOPROCESSING) and a constant this pointer
of the current optimization algorithm as argument. Note that GOptimizationMonitorT<>
is implemented as a member class of GOptimizationAlgorithmT<>, so that the this
pointer will appear as a GOptimizationAlgorithmT<> *, i.e. a pointer to the base class
of the corresponding optimization algorithm.

Internally, informationFunction() calls three different functions, depending on the chosen
information mode: firstInformation() is called for theINFOINITmode, lastInfor-
mation() for the INFOEND mode, and cycleInformation() is called in all or some

1. . . although it has been declared virtual, so you could overload it in derived classes.

212

The Geneva Library Collection 25.2. Specifics for the Algorithms

iterations of the optimization process. How often the function is called is user-defined – listing 25.1
shows the details.

All three functions are virtual, so that users may derive custom optimization monitors from GOp-
timizationMonitorT<> and load them into their algorithm. Their overloaded information
functions can reveal every detail of the current optimization algorithm. Note that they will have to
perform a cast internally to the target algorithm, as the information functions receive a base pointer to
GOptimizationAlgorithmT<> only.

GOptimizationAlgorithmT<> implements a suitableGOptimizationMonitorT<>
class, which is loaded by default, so in general no user interaction is required. However, it only outputs
the best result of the current iteration.

25.2. Specifics for the Algorithms

In order to facilitate access to the optimization monitor, each of the “stock” optimization algorithms
of the Geneva library collection implements its own version of the optimization monitor, as a deriva-
tive of GOptimizationMonitorT<>. As an example, GBaseEA as the base class of all
Evolutionary Algorithms, implements the GEAOptimizationMonitor class. The three in-
formation functions described in section 25.1 are overloaded. They cast the GOptimization-
AlgorithmT<> * base pointers to GBaseEA *, so the monitor can get easy access to the
internals of the algorithm. As GEAOptimizationMonitor is implemented as an embedded
class of GBaseEA, which is loaded by the object itself, fast static casts can be used.

If you intend to write your own optimization monitor, you may have to derive your own class from GOp-
timizationMonitorT<> and overload the three functions firstInformation() ,
lastInformation() and cycleInformation().

A complete usage example, including the development of a custom optimization monitor, will
be shown in chapter 26.

25.3. Pluggable Optimization Monitors

Geneva comprises a second mechanism for monitoring, which is designed to observe individuals
more than entire algorithms. These so called “pluggable optimization monitors” carry less overhead,
and there is a number of general purpose monitors already predefined for common tasks.

• GCollectiveMonitorT<> allows to aggregate different monitors

• GProgressPlotterT<> monitor a given set of variables inside of all or of the best indi-
viduals of a population, creating a graphical output using ROOT. It supports floating point types
only. double and float values may not be mixed.

• GAllSolutionFileLoggerT<> allows to log all candidate solutions found to a file.
Note that the file may become very large! Results are output in the following format: param1

213

Chapter 25. Optimization Monitors The Geneva Library Collection

param2 ... param_m eval1 eval2 ... eval_n . By default, no com-
mas are printed between values.

• GNAdpationsLoggerT<> allows to log the number of adaptions made inside of adap-
tors to a file. This is mostly needed for debugging and profiling purposes. The number of
adaptions made is a good measure for the current adaption probability.

• GAdaptorPropertyLoggerT<> allows to log chosen properties of adaptors. Such
properties are limited to numeric entities, that may be converted to double. This monitor thus
allows direct measurement of the adaption probability.

If you intend to write your own pluggable monitor, we recommend to have a look at these predefined
classes (see file GPluggableOptimizationMonitorsT.hpp). Further monitors will be
added over time.

Listing 25.2 shows how to register two monitors with go, with the help of the collective monitor.

Listing 25.2: Registering a pluggable optimization monitor
1 boost : : shared_ptr <GCol lect iveMoni torT <GParameterSet> >
2 c o l l e c t i v e M o n i t o r _ p t r (new GCol lect iveMoni torT <GParameterSet > ()) ;
3
4 boost : : shared_ptr <GAl lSo lu t ionF i leLoggerT <GParameterSet> >
5 a l l s o l u t i o n L o g g e r _ p t r (new GAl lSo lu t ionF i leLoggerT <GParameterSet >(l o g A l l))
6 a l l s o l u t i o n L o g g e r _ p t r −>setUseTrueFitness (fa lse) ;
7 a l l s o l u t i o n L o g g e r _ p t r −>setShowVal id i t y (true) ;
8
9 boost : : shared_ptr <GAdaptorPropertyLoggerT <GParameterSet , double> >

10 sigmaLogger_ptr (
11 new GAdaptorPropertyLoggerT <GParameterSet , double >(
12 logSigma ,
13 " GDoubleGaussAdaptor " ,
14 " sigma "
15)
16) ;
17 sigmaLogger_ptr−>setMoni torBestOnly (fa lse) ;
18
19 c o l l e c t i v e M o n i t o r _ p t r −>registerPluggableOM (a l l s o l u t i o n L o g g e r _ p t r) ;
20 c o l l e c t i v e M o n i t o r _ p t r −>registerPluggableOM (sigmaLogger_ptr) ;
21
22 i f (c o l l e c t i v e M o n i t o r _ p t r −>hasOpt imizat ionMoni tors ()) {
23 go . registerPluggableOM (
24 boost : : b ind (
25 &GCol lect iveMoni torT <GParameterSet > : : i n fo rma t ionFunc t i on
26 , c o l l e c t i v e M o n i t o r _ p t r
27 , _1
28 , _2
29)
30) ;
31 }

The code is taken from example 13_GPluggableOptimizationMonitors.

214

Chapter 26.

A More Complex Example

The purpose of this chapter is to demonstrate many of the past chapters’ techniques on a practical
example. It builds on the introduction of chapter 11.

There will be an easy start, as we will first refine the GParaboloid2D example, so that it can
handle an arbitrary amount of dimensions, and an additional target function alongside the parabola.
We will then develop a factory class for the associated GFMinIndividual, in order to read con-
figuration options from file. In the next step, we will set up a new, Go2-based main() function and
present a custom optimization monitor, which produces a graphical view of the optimization progress.

Over the course of this chapter, a complete environment is created that can well serve as a starting
point for your own optimization problems1.

The entire example, called GFunctionMinimizer, can be found in the Geneva distribution, in
the directory examples/geneva/07_GFunctionMinimizer .

Key points: (1) GFMinIndividual further develops the idea of an individual whose target function can be
switched. It is mainly used for profiling and efficiency tests. (2) Individuals can add their own configuration options
to a GParserBuilder object, which will then automatically create and parse configuration files. (3) This
facilitates the creation of factories that set up individuals according to variables specified in the configuration files
(4) Optimization Monitors can be added “on demand” to optimization algorithms (5) They may depend on the
internals of a given algorithm. Creating a “one size fits all” monitor is thus difficult (6) Setting up the main()
function is facilitated by the Go2 class

26.1. Setting Up the Individual

In this section, we want to extend listing 11.1, so that a new individual GFMinIndividual be-
comes available. It can handle an arbitrary number of dimensions, as well as more then one target
function. We will also discuss how the configuration information can be serialized. If you have skipped

1Another option would be the example examples/10_GStarter, which is more refined than example 7 and can
in addition be compiled independent from the main Geneva source tree.

215

Chapter 26. A More Complex Example The Geneva Library Collection

chapter 11, we recommend that you read it first, as it contains a number of explanations which will
not be replicated in this chapter. Listing 26.1 shows that, compared to listing 11.1, the declaration of
GFMinIndividual hasn’t changed much.

Listing 26.1: The declaration of the GFMinIndividual class
1 namespace Gem {
2 namespace Geneva {
3
4 class GFMinInd iv idual : public GParameterSet {
5 public :
6 GFMinInd iv idual () ;
7 GFMinInd iv idual (const GFMinInd iv idual &) ;
8 v i r t u a l ~GFMinInd iv idual () ;
9

10 const GFMinInd iv idual& operator =(const GFMinInd iv idual &) ;
11
12 void setTargetFunct ion (ta rge tFunc t i on) ;
13 ta rge tFunc t i on getTargetFunct ion () const ;
14
15 v i r t u a l void
16 addConf igurat ionOpt ions (Gem: : Common : : GParserBui lder & , const bool &) ;
17
18 double getAverageSigma () const ;
19
20 protected :
21 v i r t u a l void load_ (const GObject *) ;
22 v i r t u a l GObject * clone_ () const ;
23
24 v i r t u a l double f i t n e s s C a l c u l a t i o n () ;
25
26 private :
27 f r iend class boost : : s e r i a l i z a t i o n : : access ;
28 template <class Archive >
29 void s e r i a l i z e (Archive & ar , const unsigned i n t) {
30 ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(GParameterSet)
31 & BOOST_SERIALIZATION_NVP(ta rge tFunc t ion_) ;
32 }
33
34 double parabola (const std : : vector <double>& parVec) const ;
35 double noisyParabola (const std : : vector <double>& parVec) const ;
36
37 ta rge tFunc t i on ta rge tFunc t ion_ ;
38 } ;
39
40 } / * namespace Geneva * /
41 } / * namespace Gem * /
42
43 BOOST_CLASS_EXPORT_KEY(Gem: : Geneva : : GFMinInd iv idual)
44 / / Remember t h a t the . cpp f i l e needs to hold a
45 / / corresponding BOOST_CLASS_EXPORT_IMPLEMENT() statement !

216

The Geneva Library Collection 26.1. Setting Up the Individual

There are still default- and a copy constructors as well as a destructor. An additional variable has been
added, allowing to switch between two functions parabola() and noisyParabola() (com-
pare sections A.1 and A.2 in the appendix for an illustration of these functions). The implementation
of both functions in private helper functions is trivial. They are called from within fitnessCalcu-
lation().

The targetFunction_ variable can be set and retrieved using two “getter” and “setter” func-
tions. targetFunction_ itself needs to be initialized by the constructor.

There are also load_() and clone_ functions. load_() takes care of loading the parent
class’es data (by calling itsload_() function), and also copiestargetFunction_. clone_
uses the copy constructor to create an exact copy of this object.

targetFunction_ has also been added to the serialize() function, as we need to give
remote entities information on the target function to call inside of fitnessCalculation().

If you have read chapter 11, then there cannot have been many surprises for you up till now, and we
do not need to further refine the structure discussed up till here. The only notable additions over listing
11.1 are the addConfigurationOptions() and the getAverageSigma() function.

getAverageSigma() will be used in section 26.3 to implement a custom optimization monitor2.

The reasoning behind addConfigurationOptions() is described in section 33.3. Our
goal is to facilitate the creation of a factory class for GFMinIndividual, which reads all its data
from a configuration file and configures the GFMinIndividual objet as required.

All of Geneva’s core optimization classes are all equipped with this function. Its purpose is to add local
configuration variables to a configuration file and retrieve parsed values for these variables. Listing
26.2 shows the function’s implementation.

Listing 26.2: The implementation of the GFMinIndividual::addConfigurationOptions() function
1 namespace Gem {
2 namespace Geneva {
3
4 void GFMinInd iv idual : : addConf igurat ionOpt ions (
5 Gem: : Common : : GParserBui lder& gpb
6 , const bool& showOrigin
7) {
8 s td : : s t r i n g comment ;
9

10 / / Ca l l our parent c lass ’ es f u n c t i o n
11 GParameterSet : : addConf igurat ionOpt ions (gpb , showOrigin) ;
12
13 / / Add l o c a l data
14 comment = " " ; / / Reset the comment s t r i n g
15 comment += " Spec i f i es which t a r g e t f u n c t i o n should be used : ; " ;
16 comment += " 0 : Parabola ; " ;
17 comment += " 1 : Noisy Parabola ; " ;
18
19 i f (showOrigin) comment += " [GFMinInd iv idual] " ;

2This happens for illustration reasons, as the pluggable optimization monitors already contain a facility to extract sigma

217

Chapter 26. A More Complex Example The Geneva Library Collection

20 gpb . reg i s te rF i l eParamete r < ta rge tFunc t ion >(
21 " ta rge tFunc t i on " / / The name of the v a r i a b l e
22 , GO_DEF_TARGETFUNCTION / / The d e f a u l t value
23 , boost : : b ind (
24 &GFMinInd iv idual : : se tTargetFunct ion
25 , th is
26 , _1
27)
28 , Gem: : Common : : VAR_IS_ESSENTIAL
29 , comment
30) ;
31 }
32
33 } / * namespace Geneva * /
34 } / * namespace Gem * /

Essentially, the local targetFunction_ option is added to a GParserBuilder object,
which has been passed to the function as a parameter. We do not pass a reference to the variable, but
rather ask registerFileParameter<targetFunction>() to call a call-back func-
tion with the parsed parameter.

addConfigurationOptions() also passes the object to theGParserBuilder parent
class, which will recursively add its own options and those of its parent classes. This way any change
to a class’s architecture is immediately reflected in the configuration files.

If you have watched carefully, you will have noticed that listing 26.1 shows no sign of the dimension of
the target function, and also the lower and upper boundaries of the variables have vanished from the
declaration.

In order to understand this, please think back at the architecture of individuals. They are essentially
STL-containers, to which parameter objects can be added. Compare figure 15.2 for the details. In
chapter 11 we had asked the constructor to equip parameter objects with adaptors and add them to
the class.

With the current example, however, it is more flexible to let an external entity configure the parameter
objects and add them to the GFMinIndividual object. This external entity – a factory class –
will be described in the next section.

26.2. Creating a Factory

We have already learned about the GFactoryT<> class template in section 33.4. We will now use
its services to create a factory for GFMinIndividual that can read its options from a configura-
tion file. Listing 26.3 shows the class declaration of the factory.

Listing 26.3: A factory for GFMinIndividual objects
1 namespace Gem {
2 namespace Geneva {
3

218

The Geneva Library Collection 26.2. Creating a Factory

4 class GFMinInd iv idua lFactory
5 : public Gem: : Common : : GFactoryT<GFMinIndiv idual >
6 {
7 public :
8 GFMinInd iv idua lFactory (const std : : s t r i n g &) ;
9 v i r t u a l ~GFMinInd iv idua lFactory () ;

10
11 protected :
12 v i r t u a l boost : : shared_ptr <GFMinIndiv idual > getObject_ (
13 Gem: : Common : : GParserBui lder&
14 , const std : : s i z e _ t&
15) ;
16 v i r t u a l void descr ibeLocalOpt ions_ (Gem: : Common : : GParserBui lder &) ;
17 v i r t u a l void postProcess_ (boost : : shared_ptr <GFMinIndiv idual >&);
18
19 private :
20 GFMinInd iv idua lFactory () ;
21
22 double adProb_ ;
23 double sigma_ ;
24 double sigmaSigma_ ;
25 double minSigma_ ;
26 double maxSigma_ ;
27 std : : s i z e _ t parDim_ ;
28 double minVar_ ;
29 double maxVar_ ;
30 } ;
31
32 } / * namespace Geneva * /
33 } / * namespace Gem * /

We see two public constructors. The “standard” constructor accepts the name of a configuration file
as argument and initializes local data. The destructor does essentially nothing. A default constructor
is intentionally private and undefined, so this factory can only be instantiated with the name of a
configuration file.

The only important functions are getObject_(), describeLocalOptions_() and
postProcess_(). It is here that GFMinIndividual objects are created and configured.
The functions have been overloaded from the parent class GFactoryT<Gem::Common::GF-
MinIndividual>. We will discuss them one by one.

Listing 26.4: The GFMinIndividualFactory::getObject_() function

1 boost : : shared_ptr <GFMinIndiv idual > GFMinInd iv idua lFactory : : getObject_ (
2 Gem: : Common : : GParserBui lder& gpb
3 , const std : : s i z e _ t& i d
4) {
5 / / W i l l hold the r e s u l t
6 boost : : shared_ptr <GFMinIndiv idual > t a r g e t (new GFMinInd iv idual ()) ;
7
8 / / Make the ob jec t ’ s l o c a l c o n f i g u r a t i o n opt ions known

219

Chapter 26. A More Complex Example The Geneva Library Collection

9 ta rge t−>addConf igurat ionOpt ions (gpb , true) ;
10
11 return t a r g e t ;
12 }

Listing 26.4 shows the implementation of the getObject_() function. It first creates a default-
constructed GFMinIndividual object inside of a boost::shared_ptr<> smart pointer.
It then gives it an opportunity to register any local configuration options (compare listing 26.2) before
returning the smart pointer to the caller.

Listing 26.5: The describeLocalOptions_() function

1 void GFMinInd iv idua lFactory : : descr ibeLocalOpt ions_ (Gem: : Common : : GParserBui lder& gpb) {
2 using namespace Gem: : Cou r t i e r ;
3
4 / / Describe our own opt ions
5 std : : s t r i n g comment ;
6
7 comment = " " ;
8 comment += " The p r o b a b i l i t y f o r random adapt ions o f values ; " ;
9 gpb . reg i s te rF i l eParamete r <double >(

10 " adProb "
11 , adProb_
12 , GFI_DEF_ADPROB
13 , Gem: : Common : : VAR_IS_ESSENTIAL
14 , comment
15) ;
16
17 comment = " " ;
18 comment += " The sigma f o r gauss−adapt ion i n ES; " ;
19 gpb . reg i s te rF i l eParamete r <double >(
20 " sigma "
21 , sigma_
22 , GFI_DEF_SIGMA
23 , Gem: : Common : : VAR_IS_ESSENTIAL
24 , comment
25) ;
26
27 / / R e g i s t r a t i o n o f f u r t h e r c o n f i g u r a t i o n opt ions has been erased
28
29 / / Al low our parent c lass to descr ibe i t s op t ions
30 Gem: : Common : : GFactoryT<GFMinIndiv idual > : : descr ibeLocalOpt ions_ (gpb) ;
31 }

Listing 26.5 shows part of the implementation of the GFMinIndividualFactory::des-
cribeLocalOptions_() function. Its purpose is to register local options of the factory with
the GParserBuilder object. Not all registered options are shown for space reasons. Compare
listing 26.3 for all options that need to be added. Typically these are variables that are needed to
configure the target objet to be created by the factory. They will be read from (and written to, if
needed) a configuration file, once they have been registered.

220

The Geneva Library Collection 26.3. Adding a Custom Optimization Monitor

As soon as these options have become available (i.e. have been read from file), the factory needs to
post-process the GFMinIndividual object. This happens in the postProcess_() func-
tion and is described in listing 26.6.

Listing 26.6: The GFMinIndividualFactory::postProcess_() function

1 void GFMinInd iv idua lFactory : : postProcess_ (boost : : shared_ptr <GFMinIndiv idual >& p) {
2 / / Set up a c o l l e c t i o n w i th parDim_ values
3 boost : : shared_ptr <GConstrainedDoubleCol lect ion >
4 gcdc_ptr (new GConstra inedDoubleCol lect ion (parDim_ , minVar_ , maxVar_)) ;
5
6 / / Randomly i n i t i a l i z e
7 gcdc_ptr−>randomIn i t () ;
8
9 boost : : shared_ptr <GDoubleGaussAdaptor>

10 gdga_ptr (new GDoubleGaussAdaptor (sigma_ , sigmaSigma_ , minSigma_ , maxSigma_)) ;
11 gdga_ptr−>s e t A d a p t i o n P r o b a b i l i t y (adProb_) ;
12 gcdc_ptr−>addAdaptor (gdga_ptr) ;
13
14 / / Make the parameter c o l l e c t i o n known to t h i s i n d i v i d u a l
15 p−>push_back (gcdc_ptr) ;
16 }

The function receives the smart pointer that was created in the getObject_() function in listing
26.4. It then creates a parameter object and equips it with an adaptor. Once done, the parameter
object is added to the GFMinIndividual object.

At this point the creation of the individual is done and it can be returned to the user. The user will
typically receive it from the factory by means of an operator(), i.e. he can treat the factory like
a normal function. See the description in section 26.4 for an example on how to use the factory. Note
that the user of the factory will not get to see the three functions implemented above, as they are
protected. They are for internal use by the factory only, but need of course to be implemented by the
author of the factory.

26.3. Adding a Custom Optimization Monitor

By default, Geneva’s optimization monitors will only produce information about the progress of the
optimization, namely the fitness of the best individual(s). Sometimes this is not enough and you
might want to extract further information about the progress of the optimization run. This may be for
debugging purposes, or you might want to output additional data in every iteration.

Note that the creation of an optimization monitor is entirely optional, but can help with some
advanced scenarios.

As information will generally be extracted from the optimization algorithm, the creation of monitors
cannot be seen independently of the optimization strategy. In this section, we want to lead you through
the creation of an optimization monitor for an Evolutionary Algorithm (“EA”). As was discussed in

221

Chapter 26. A More Complex Example The Geneva Library Collection

Figure 26.1.: Geneva’s default optimization monitor would only write out the progress of the optimiza-
tion run in ROOT format. The figure shows the progress for a standard 2D parabola, as
output by the optimization monitor discussed in this chapter

chapters 4 and 18, mutations are carried out by the adaptors assigned to the parameter objects
stored in individuals. The most common mutation of Evolutionary Strategies uses gaussian-distributed
random numbers, which are added on a feature vector of double values. A gaussian has a σ value,
denoting the “width” of the curve (compare figure 4.2). In this section, we will now try to extract the
current σ value of the adaptor assigned to the GConstrainedDoubleCollection of the
GFMinIndividual. Once the optimization run is over, we want to create a plot of the σ values
of each iterations’ best individual.

The example is based on the discussion of chapter 25. Note that our implementation applies to Evolu-
tionary Algorithms only, so we derive from GEAOptimizationMonitor. We also need to over-
load the firstInformation(), cycleInformation and lastInformation()
function. The declaration of GSigmaMonitor is shown in listing 26.7.

Listing 26.7: The declaration of GSigmaMonitor
1
2 class GSigmaMonitor
3 : public GBaseEA : : GEAOptimizat ionMonitor
4 {
5 public :
6 GSigmaMonitor (const std : : s t r i n g f i leName) ;
7 GSigmaMonitor (const GSigmaMonitor& cp) ;
8 v i r t u a l ~GSigmaMonitor () ;
9

10 protected :
11 v i r t u a l void f i r s t I n f o r m a t i o n (GOpt imizat ionAlgor i thmT <GParameterSet> * const goa) ;
12 v i r t u a l void cyc le In fo rma t i on (GOpt imizat ionAlgor i thmT <GParameterSet> * const goa) ;
13 v i r t u a l void l a s t I n f o r m a t i o n (GOpt imizat ionAlgor i thmT <GParameterSet> * const goa) ;

222

The Geneva Library Collection 26.3. Adding a Custom Optimization Monitor

14
15 v i r t u a l void load_ (const GObject * cp) ;
16 v i r t u a l GObject * clone_ () const ;
17
18 private :
19 GSigmaMonitor () ;
20
21 std : : s t r i n g fi leName_ ; / / / < The name of the output f i l e
22
23 / / Ease record ing o f e s s e n t i a l i n f o rma t i on
24 Gem: : Common : : GPlotDesigner gpd_ ;
25 boost : : shared_ptr <Gem: : Common : : GGraph2D> prog ressP lo t t e r_ ;
26 boost : : shared_ptr <Gem: : Common : : GGraph2D> s igmaPlo t te r_ ;
27 } ;

The standard constructor accepts the name of a file to which the result should be written and initializes
local variables. The copy constructor and destructor should be self-explanatory. load_() and
clone_() follow the same rules as for any other optimization-related Geneva class and will not be
further explained here. The default constructor has been disabled by labelling it private and keeping it
undefined.

Recorded data is stored directly in plotters associated with Geneva’s GPlotDesigner class
(progressPlotter_ and progressPlotter_). Both will later be added to a GPlot-
Designer object (gpd_), which takes care of the output of results. See chapter 33.9 for further
information on the plot designer.

The only functions that need further explanations are thus firstInformation(), cycle-
Information() and lastInformation(). We will look at them one by one.

Listing 26.8: The implementation of firstInformation()
1 void GSigmaMonitor : : f i r s t I n f o r m a t i o n (GOpt imizat ionAlgor i thmT <GParameterSet> * const goa) {
2 / / I n i t i a l i z e the p l o t s we want to record
3 progressP lo t te r_−>setPlotMode (Gem: : Common : :CURVE) ;
4 progressP lo t te r_−>se tP lo tLabe l (" F i tness as a f u n c t i o n o f the i t e r a t i o n ") ;
5 p rogressP lo t te r_−>setXAxisLabel (" I t e r a t i o n ") ;
6 p rogressP lo t te r_−>setYAxisLabel (" Best Resul t (lower i s b e t t e r) ") ;
7
8 s igmaPlot ter_−>setPlotMode (Gem: : Common : :CURVE) ;
9 s igmaPlot ter_−>se tP lo tLabe l (" Development o f sigma (aka \ \ \ " step width \ \ \ ") ") ;

10 s igmaPlot ter_−>setXAxisLabel (" I t e r a t i o n ") ;
11 s igmaPlot ter_−>setYAxisLabel (" Sigma ") ;
12
13 gpd_ . setCanvasDimensions (P_XDIM, P_YDIM) ;
14 gpd_ . r e g i s t e r P l o t t e r (p rog ressP lo t t e r_) ;
15 gpd_ . r e g i s t e r P l o t t e r (s igmaPlo t te r_) ;
16
17 / / We c a l l the parent c lasses f i r s t I n f o r m a t i o n func t i on ,
18 / / as we do not want to change i t s ac t i ons
19 GBaseEA : : GEAOptimizat ionMonitor : : f i r s t I n f o r m a t i o n (goa) ;
20 }

223

Chapter 26. A More Complex Example The Geneva Library Collection

Listing 26.8 shows the firstInformation() class. It sets up the progress plotters and calls
the corresponding parent class’es function. firstInformation() is called before the actual
optimization starts.

Listing 26.9 is where the σ of the best individual of each iteration is extracted.

Listing 26.9: The implementation of cycleInformation()
1 void GSigmaMonitor : : c yc l e In fo rma t i on (GOpt imizat ionAlgor i thmT <GParameterSet> * const goa) {
2 / / Convert the base p o i n t e r to the t a r g e t type
3 GBaseEA * const ea = stat ic_cast <GBaseEA * const >(goa) ;
4
5 / / Ex t rac t the requested data . F i r s t r e t r i e v e the best i n d i v i d u a l .
6 / / I t can always be found i n the f i r s t p o s i t i o n w i th e vo lu t i ona ry a lgor i thms
7 boost : : shared_ptr <GFMinIndiv idual > p = ea−>clone_at <GFMinIndiv idual > (0) ;
8
9 / / Ret r ieve the best " raw " f i t n e s s and average sigma value

10 progressP lo t te r_−>add (
11 boost : : tup le <double , double >((double) ea−>g e t I t e r a t i o n () , p−>f i t n e s s ())
12) ;
13 s igmaPlot ter_−>add (
14 boost : : tup le <double , double >((double) ea−>g e t I t e r a t i o n () , p−>getAverageSigma ())
15) ;
16
17 / /−−−
18 / / Ca l l our parent c lass ’ es f u n c t i o n
19 GBaseEA : : GEAOptimizat ionMonitor : : c yc l e In fo rma t i on (goa) ;
20 }

We know that in evolutionary algorithms the best individual is located in the first position of the pop-
ulation. Hence we can extract the individual and ask it for its average sigma value. This is done by
means of the GFMinIndividual::getAverageSigma() function, which we had intro-
duced in listing 26.1. So essentially, all necessary work is done by extracting the best individual and
asking it for its average σ value. cycleInformation() is called in regular intervals during the
optimization, according to the user settings3.

In contrast, lastInformation() is called by GOptimizationMonitorT<>’s main
loop after the optimization has ended. It is here that we want to write out the results. Listing 26.10
shows the very simple details – all work is done by the GPlotDesigner object.

Listing 26.10: The implementation of eaLastInformation()
1 void GSigmaMonitor : : l a s t I n f o r m a t i o n (GOpt imizat ionAlgor i thmT <GParameterSet> * const goa) {
2 / / Wr i te out the r e s u l t
3 gpd_ . w r i t e T o F i l e (f i leName_) ;
4
5 / / We j u s t c a l l the parent c lasses eaLas t In fo rmat ion func t i on ,
6 / / as we do not want to change i t s ac t i ons
7 GBaseEA : : GEAOptimizat ionMonitor : : l a s t I n f o r m a t i o n (goa) ;
8 }

3By default it will be called in every iteration.

224

The Geneva Library Collection 26.3. Adding a Custom Optimization Monitor

GPlotDesigner dynamically creates a pre- and postamble, and injects the dynamic σ measure-
ments in-between. The resulting ROOT script is shown in listing 26.11.

Listing 26.11: The result file created with GPlotDesigner
1 {
2 gROOT−>Reset () ;
3 gStyle−>SetCanvasColor (0) ;
4 gStyle−>SetStatBorderSize (1) ;
5 gStyle−>SetOptStat (0) ;
6
7 TCanvas *cc = new TCanvas (" cc " , " cc " ,0 ,0 ,1200 ,1400) ;
8
9 TPaveLabel* canvasT i t l e = new TPaveLabel (0 .2 ,0 .95 ,0 .8 ,0 .99 , " Progress i n fo rma t i on ") ;

10 canvasT i t le−>Draw () ;
11
12 TPad* graphPad = new TPad(" Graphs " , " Graphs " , 0.01 , 0.01 , 0.99 , 0 . 9 4) ;
13 graphPad−>Draw () ;
14 graphPad−>Div ide (1 , 2) ;
15
16 / / =================== Header Sect ion ====================
17 double x_array__0 [9 1] ;
18 double y_array__0 [9 1] ;
19
20 double x_array__1 [9 1] ;
21 double y_array__1 [9 1] ;
22
23 / / =================== Data Sect ion ======================
24
25 x_array__0 [0] = 0 ; y_array__0 [0] = 6.76806;
26 x_array__0 [1] = 1 ; y_array__0 [1] = 2.06513;
27 x_array__0 [2] = 2 ; y_array__0 [2] = 0.0374993;
28 / / En t r i es removed f o r ease of r e a d a b i l i t y
29 x_array__0 [8 8] = 88; y_array__0 [8 8] = 3.79166e−06;
30 x_array__0 [8 9] = 89; y_array__0 [8 9] = 1.67342e−06;
31 x_array__0 [9 0] = 90; y_array__0 [9 0] = 3.53337e−08;
32
33 x_array__1 [0] = 0 ; y_array__1 [0] = 0.0223039;
34 x_array__1 [1] = 1 ; y_array__1 [1] = 0.0195696;
35 x_array__1 [2] = 2 ; y_array__1 [2] = 0.0429653;
36 / / En t r i es removed f o r ease of r e a d a b i l i t y
37 x_array__1 [8 8] = 88; y_array__1 [8 8] = 0.001;
38 x_array__1 [8 9] = 89; y_array__1 [8 9] = 0.001;
39 x_array__1 [9 0] = 90; y_array__1 [9 0] = 0.001;
40
41 / / =================== P lo t Sect ion ======================
42
43 graphPad−>cd (1) ;
44 TGraph *graph_0 = new TGraph (91 , x_array__0 , y_array__0) ;
45 graph_0−>GetXaxis ()−> S e t T i t l e (" I t e r a t i o n ") ;
46 graph_0−>GetYaxis ()−> S e t T i t l e (" Best Resul t (lower i s b e t t e r) ") ;
47 graph_0−>S e t T i t l e (" F i tness as a f u n c t i o n o f the i t e r a t i o n ") ;

225

Chapter 26. A More Complex Example The Geneva Library Collection

48 graph_0−>Draw ("APL") ;
49
50 graphPad−>cd (2) ;
51 TGraph *graph_1 = new TGraph (91 , x_array__1 , y_array__1) ;
52 graph_1−>GetXaxis ()−> S e t T i t l e (" I t e r a t i o n ") ;
53 graph_1−>GetYaxis ()−> S e t T i t l e (" Sigma ") ;
54 graph_1−>S e t T i t l e (" Development o f sigma (aka \ " step width \ ") ") ;
55 graph_1−>Draw ("APL") ;
56
57 graphPad−>cd () ;
58 cc−>cd () ;
59 }

The sigma-part of the resulting plot can be seen in figure 26.1. The above code also records the
fitness alongside the sigma value.

Assessment

We have now seen that writing a custom optimization monitor is rather easy. The firstInfor-
mation(), cycleInformation(), lastInformation() family of functions gets ac-
cess to the optimization algorithm and can ask it for any information that can be publicly accessed. A
difficulty arises through the fact that information is specific to the given optimization algorithm, making
it difficult to write a “one size fits all” monitor.

In our example, we have done more than “just” overloading the ea family of functions. We have in
addition called the parent class’s functions. As a consequence, we have received two output files, one
showing the progress of the optimization run, the other the development of the best σ as a function of
the iteration.

The next section (26.4) will show you how to set up main() and also how to register the optimization
monitor with your optimization algorithm.

26.4. Setting up main()

With the help of Go2, the main() function becomes rather simple. It is shown in listing 26.12. We
have omitted the #include section.

Listing 26.12: The main() function, created with the Go2 class

1 using namespace Gem: : Geneva ;
2 namespace po = boost : : program_options ;
3
4 i n t main (i n t argc , char ** argv) {
5 bool p r i n t B e s t = fa lse ;
6 s td : : vector <boost : : shared_ptr <po : : op t i on_desc r i p t i on > > od ;
7 boost : : shared_ptr <po : : op t i on_desc r i p t i on > p r i n t _ o p t i o n (
8 new po : : o p t i o n _ d e s c r i p t i o n (

226

The Geneva Library Collection 26.4. Setting up main()

9 " p r i n t "
10 / / This a l lows you say both −−p r i n t and −−p r i n t = t rue
11 , po : : value <bool >(& p r i n t B e s t)−> i m p l i c i t _ v a l u e (true)−> de fau l t_va lue (fa lse)
12 , " Switches on p r i n t i n g o f the best r e s u l t "
13)
14) ;
15 od . push_back (p r i n t _ o p t i o n) ;
16
17 Go2 go (argc , argv , " . / con f i g /Go2 . json " , od) ;
18
19 / /−−−
20 / / C l i e n t mode
21 i f (go . c l ientMode ()) {
22 return go . c l ien tRun () ;
23 }
24
25 / /−−−
26 / / Server mode, s e r i a l or mu l t i−threaded execut ion
27
28 / / Create a f a c t o r y f o r GFMinInd iv idual ob jec ts and perform
29 / / any necessary i n i t i a l work .
30 GFMinInd iv idua lFactory g f i (" . / con f i g / GFMinInd iv idual . json ") ;
31 / / Ret r ieve an i n d i v i d u a l from the f a c t o r y and make i t known to the op t im i ze r
32 go . push_back (g f i ()) ;
33
34 / / Reg is te r an o p t i m i z a t i o n moni tor f o r evo lu t i ona ry a lgor i thms . This a l lows
35 / / the GEvo lu t ionaryA lgor i thmFactory to f i n d s u i t a b l e moni tors i n the s to re .
36 GOAMonitorStore−>setOnce (" ea " , boost : : shared_ptr <GSigmaMonitor> (
37 new GSigmaMonitor (" . / sigmaProgress .C"))
38) ;
39
40 / / Create an e v o l u t i o na ry a lgo r i t hm i n mu l t i−threaded mode
41 GEvolu t ionaryA lgor i thmFactory ea (
42 " . / con f i g / GEvo lu t ionaryAlgor i thm . json "
43 , EXECMODE_MULTITHREADED
44) ;
45 boost : : shared_ptr <GBaseEA> ea_ptr = ea . get <GBaseEA> () ;
46
47 / / Add the a lgo r i t hm to the Go2 ob jec t
48 go & ea_ptr ;
49
50 / / Perform the ac tua l o p t i m i z a t i o n
51 boost : : shared_ptr <GFMinIndiv idual > b e s t I n d i v i d u a l _ p t r
52 = go . opt imize <GFMinIndiv idual > () ;
53
54 / / Do something wi th the best r e s u l t . Here : Simply p r i n t i t , i f requested
55 i f (p r i n t B e s t) {
56 std : : cout << " Best i n d i v i d u a l found has values " << std : : endl
57 << b e s t I n d i v i d u a l _ p t r << std : : endl ;
58 }
59 }

227

Chapter 26. A More Complex Example The Geneva Library Collection

Most of the details of listing 26.12 have already been explained in chapter 24 (also compare listing
24.1). However, take note of how we have added a custom command line option (-print), which
will be handled automatically be Go2.

Beyond this, we will only describe the additions we have made for the optimization monitor. It can be
added by registering it with a global monitor store (function setOnce(), with key “ea”). Whenever
a new evolutionary algorithm is created through the factory, it will now search in the global monitor
store for a suitable optimization monitor and load it into its data structures.

Note that we could also have added the optimization monitor directly to our EA object, usingea_ptr-
>registerOptimizationMonitor(mon_ptr), wheremon_ptrwould be aboost-
::shared_ptr to our optimization monitor. However, the monitor would then only be available to
this particular EA object.

228

Chapter 27.

Caveats and Restrictions

We have now described the Geneva library on well over 250 pages. We do believe that it is quite
comprehensive and offers ample opportunity for further development. With its over 130000 lines of
code, though, there are some areas where design compromises had to be made. This chapter thus
wants to collect restrictions, caveats and plain oddities that you might encounter up over time. It can
also be understood as a breeding ground for future improvements, as we will aim to amend the library
where needed. As this is a “living” document that will be changed frequently, this chapter will not be
preceded by the “key points”, as is common in other chapters.

27.1. Floating Point Accuracy

Geneva does not enforce restrictions regarding the allowed value range of floating point variables.
Users must however be aware that optimization techniques can return senseless results where very
large floating point values are being used. This is due to the way IEEE 754 floating point numbers
work. Obviously, as a double variable is represented by a fixed number of bits, it cannot assume
every possible value in its value range. Instead, the distance between two allowed values will grow
with growing absolute size of the value. Close to 0, a double precision value can carry 16 digits
– this is where the precision is highest. On the other hand, the distance between two allowed values
close to the upper or lower limit can be as high as 10290 . . .

It is thus recommended that problem definitions are written in such a way that the parameters
to be modified act in the range [0,1].

This is a general issue which is independent of the Geneva library collection.

27.2. Gradient Descent and Varying Parameter Value Ranges

A Gradient Descent, as implemented in the Geneva library, calculates the direction of steepest descent
and makes a finite step in that direction. This procedure can be problematic if some parameters have
a constrained value range, possibly even of different size. It is thus recommended to formulate an
optimization problem in such a way that all parameters have the same value range. It is always
possible to scale the value range inside of an evaluation function.

229

Chapter 27. Caveats and Restrictions The Geneva Library Collection

27.3. “Silent changes” to parameter values

Geneva was designed for optimization problems with particularly long-running evaluation functions. As
the evaluation will remain constant as long as the parameters don’t change, Geneva caches the fitness
values. Re-evaluation only happens when the parameters have changed. While automatic detection of
parameter-changes would technically be possible, it would be computationally quite expensive. Hence
Geneva relies on a “dirty flag”, which must be set whenever changes to parameter values are made.
As long as these changes are made by Geneva, this happens automatically. Users should however
avoid to make parameter changes without setting the dirty flag, otherwise Geneva will not function
properly. The one exception are individuals that are newly created – their “dirty flag” will be set by
default.

27.4. Individuals with a Variable Architecture

There are valid optimization use cases, where the number of parameters changes in the course of
the optimization. E.g., if we look back to the the Mona Lisa example (see section 9.1.1), one might
want to start with a single triangle and then add further triangles, when the optimization stalls. 10 new
parameters will be added for each new triangle.

Similarly, the training of a feed-forward neural network (see section 9.3) might involve a simultaneous
modification of the network’s architecture (see e.g. [8, pp. 521–526]). Adding or removing nodes to or
from the network obviously changes the number of parameters subject to optimization.

Geneva tries to provide you with a set of optimization algorithms, all of which are based on the same
data structures for the specification of candidate solutions. Unfortunately, some algorithms, such as
gradient descents, cannot cope with varying dimensions of the parameter space. Hence the above
approach might not work for your setup.

Note, though, that at least in theory, Evolutionary Strategies should give you a means to neverthe-
less optimize problems with varying dimension. Problems might however arise even there when the
streamline() function is used outside of the fitness calculation scope (which should not change
the architecture). Reloading a vector of fixed size into an individual with a changed architecture will
result in an exception or the proverbial “undefined behaviour”.

Note that you can simulate variable-sized individuals by allocating a larger number of parameters, and
disallowing the modification or ignoring the values of some of them.

27.5. The Effect of the Mutation Probability

In Evolutionary Algorithms, one needs to be careful when setting the initial mutation probability of
parameters (or their adaptors) to a low value using the setAdaptionProbability() call.
Generally, this setting is meant to lead to a more directed search process.

230

The Geneva Library Collection 27.6. Value Range of Constrained Paramters

Figure 27.1.: Choosing a good mutation probability can be important for the success of an evolutionary
algorithm. In the left side of the picture, a 5% mutation probability was chosen. Several
individuals didn’t get updated at all, for some others only some parameters were updated,
resulting in a sort of line search. On the right side, a 100% mutation probability was
chosen. Except for the mutation probability, all configuration options of the optimization
were identical.

It is generally recommended to use higher initial mutation probabilities for lower numbers of
parameters.

Even thow the adaption probalility may itself be subject to mutation, if this advice is not followed,
you can get a situation where some individuals do not get changed at all, or where the evolutionary
algorithm degrades to a sort of line search. Figure 27.1 illustrates this on an example with just two
parameters.

A mutation probability of 5% means in this case, that the majority of individuals remains unchanged.
Hence, with two parameters, a mutation probability of at lest 50% should be used.

27.6. Value Range of Constrained Paramters

Parameter classes likeGConstrainedDoubleObject orGConstrainedInt32Object
will not make the full value range of the underlying basic type available to the user. The reason for this
lies in the mapping that is performed from the internal to the external representation of a parameter.
There are various occasions where the difference between upper and lower boundary is calculated.
As a statement like 2*std::numeric_limits<double>::max() will leave the allowed
value range for a double, calculating (max-min) would not be possible if max and min have

231

Chapter 27. Caveats and Restrictions The Geneva Library Collection

been assigned the largest possible values. Hence the allowed value range is reduced by a factor of
10 in Geneva. More complicated calculations would allow to use the entire value range. However,
as the above restriction is meaningless for most practical purposes (compare section 27.1), the more
efficient solution has been chosen.

27.7. Broker-flooding

Imagine you are dealing with a large population of 1000 individuals, and that your optimization runs
in networked mode. Now let us assume that we have chosen a very small upper limit to the wait-
Factor of 1, and there is just one workernode active.

In the example of an Evolutionary Algorithm, a waitFactor of 1 means that the population will
only be allowed to spend the amount of time in each iteration that is needed for the first item to return.

So in each iteration, the population will submit 1000 individuals to the broker, but will only be able to
get back a single item. This will lead to a flooding of the broker with individuals and ultimately to items
being discarded by the broker.

Thus, clearly, the waitFactor needs to take into account the number of worker nodes and the
amount of items being submitted to them in each iteration.

27.8. Assigning the worst possible evaluation

Users should always make sure to mark an individual as invalid using the protected GOptimiz-
ableEntity::markAsInvalid() function, if they wish to assign the worst known possible
evaluation (such as MAX_DOUBLE) to an individual. The reason for this is that the worst known valid
solution plays a special role in Geneva, if parameter constraints exist. This tagging must happen from
inside the evaluation function.

27.9. Secure communication

Early versions of Geneva featured optional encrypted communication. In the meantime, however, we
have removed this feature. This has happened for the following reasons:

• We expect the most likely use-case for Geneva’s network modes to be local clusters rather
than WANs (i.e. Grids and Clouds). As cluster nodes will usually have a private IP, encypted
communication does not seem to be very useful but will rather lead to bad performance.

• Where users want to use WANs, they may create static VPNs between client nodes and the
server. These can be configured in a far more versatile way than the static security setup which
would be required for Geneva.

• Geneva’s network client will open a connection to the server whenever they ask for work (“pull-
modus”). Likewise they will open (and subsequently close) a connection when they are finished

232

The Geneva Library Collection 27.9. Secure communication

with a calculation. For short evaluation times this will lead to very poor performance in the
presence of encryption, at least when a hand-shake is required

• While we do have in-house experience in security of the Linux Operating System, the same
does not apply for application design. And as the OpenSSL desaster has shown, even people
with years of experience under their belt may make programming mistakes that lead to security-
nightmares. Thus we follow the “KISS”1 principle in Geneva, particularly as there are more
versatile, secure and efficient possibilities available (such as the usage of Client-side VPNs).

1Keep it simple and stupid

233

Part III.

Details and Advanced Topics

235

Chapter 28.

Performing Meta-Optimization with Geneva

This chapter discusses the topic of meta-optimization. In the context of this chapter, this term com-
prises various techniques. Geneva has the ability to treat optimization algorithms as individuals. In
the most simple case, a given type of algorithm is loaded into an Evolutionary Algorithm. The pa-
rameter space can then be explored from different starting points. Secondly, it can make sense to
let an optimization algorithm optimize the configuration parameters of another algorithm, so that it
solves a given problem more quickly. More of a research topic is a situation where different types of
optimization algorithms compete against each other.

Key points: (1) Many different forms of meta optimization exist (2) Geneva allows to treat optimization algorithms
as individuals, hence allowing to let identical oder different algorithms compete against each other (3) Algorithms
can be themselves embedded in individuals, allowing the direct optimization of their configuration parameters (4) A
useful target function is the number of solver calls (i.e. the number of calls to the optimization criterion)

28.1. Multi-Populations

Looking back at figure 12.1 we can see that the GOptimizationAlgorithmT class is indi-
rectly derived from the GOptimizableEntity class. Evolutionary Algorithms are capable of
directly hosting GOptimizableEntity objects as the subject of optimization1. Through this
“master algorithms” cycle of duplication, mutation and selection it then becomes possible for algo-
rithms to compete against each other, implementing a simple form of meta-optimization. Note that,
for optimization algorithms, the step of mutation and selection is one, and is represented by a full
optimization cycle. The quality or fitness of an algorithm at the end of the cycle is then represented
by the fitness of the individual with the best quality. Even meta-meta-optimization (or any other depth
of hierarchy) could be done in this way, although it is doubtful whether this makes sense.

1Note that, at the time of writing, the other implemented algorithms are not suitable for this purpose. There is no way a
gradient method or a swarm could modify entire algorithms. Evolutionary algorithms, on the other hand, mainly deal
with mutations, which can be directly mapped to the initialization and optimization of a population.

237

Chapter 28. Performing Meta-Optimization with Geneva The Geneva Library Collection

The Geneva software distribution comes complete with an example illustrating multi-populations (see
08_MultiPopulation).

28.2. Optimizing Configuration Parameters

Most optimization algorithms depend on a large number of configuration options; and the success or
failure of an optimization run will often crucially depend on the right choice of parameters.

Whether an optimization run can be considered “good” or “bad” can be rated by many criteria. For
problems with very complex (hence computationally intensive) solvers, however, the most common
choice will be represented by the amount of time needed to reach a satisfactory result. This figure of
merit in turn directly depends on the total number of solver calls needed to reach a given optimum.

Where good results for a given optimization problem are already known, one can thus treat the opti-
mization run itself as the solver function, with the figure of merit being the number of calls to the solver
needed to reach the known result. Optimizing an optimization algorithm for speed thus involves vary-
ing the configuration paramters in such a way that the number of solver calls is minimized. Sometimes
it is then possible to utilize the same set of parameters for other problems of the same nature.

As many optimization problems involve the use of random numbers and will thus follow a non-deterministic
path through the parameter space, one needs to take care to run an algorithm multiple times and calcu-
late averages and standard deviations, as one might otherwise treat an “outlier” incorreclty as a result,
which is commonly achieved by an algorithm with this set of parameters. Hence this form of meta-
optimization requires some patience. Nevertheless it may pay off well, as the mutual dependencies of
different configuration parameters is not easily visible.

Using this procedure for a class of optimization problems can give indications for choices such as:

• Suitable population sizes, numbers of parents and children in evolutionary algorithms?

• How large should a swarm be and how should it be partitioned ?

• Which step widths should be chosen ?

• With what likelihood should parameters indeed be mutated ?

• Which cooling schedule is suitable for simulated annealing ?

Implementing this kind of procedure can be a bit tricky, but will generally involve the creation of a
dedicated individual, whose parameters reflect the configuration options of a given algorithm. The
fitnessCalculation() function will then instantiate an algorithm repeatedly with these set-
tings (and a given optimization problem) and determine the number of calls to the solver. The result
of the fitness function is then the average number of calls, which needs to be minimized.

This kind of problem will generally involve different variable types, most notably integral, boolean and
floating point parameters. In the context of Geneva, Evolutionary Algorithms are the most suitable
type to perform this kind of optimization.

It must be stressed, that the success of this procedure crucially depends on the validity of the general-
ization from a given optimization problem with known outcome to another problem, which is allegedly

238

The Geneva Library Collection 28.3. Letting different Algorithms Compete

of the same type (and thus can be treated with similar configuration parameters).

28.2.1. A concrete example

Figure 28.1 shows the procedure on a concrete example. An evolutionary algorithm was asked to
optimize the configuration parameters (most notably the number of parents and children, step widths
and variation ranges as well as adaption probabilities for parameters) in such a way that the average
number of solver calls was minimized.

The procedure uses Geneva’s GFunctionIndividual, which implements different bench-
mark functions, among them the so called “noisy parabola” (a.k.a. “Berlich function”, compare figure
A.2). In figure 28.1, the algorithm was applied to the two-dimensional form of this function, which has
a minimum at (0,0) and has a very high number of local optima.

The plot in the upper left corner of figure 28.1 shows the average number of solver calls, as the
optimization progressed. It is visible the algorithm converged quicky and was able to decrease the
number of solver calls by more than a factor of two. Looking at the parameters being optimized, it
is obvious that the reduction of the number of children played an important role in the procedure. It
is also visible that the internal adaption of the step width (i.e. the width of the gaussian in Gauss
mutations) was allowed to cover a very wide range by the procedure.

Figure 28.2 shows the results for the 8-dimensional version of the noisy parabola.

28.3. Letting different Algorithms Compete

Finally, with Geneva, it is generally feasible (albeit so far untested) to let different optimization al-
gorithms compete against each other. The easiest way would be an evolutionary algorithm, whose
individuals are indeed represented by optimization algorithms. Note, though, that there are some
problems with this approach.

As just one example, one has to take care that algorithms with faster convergence do not totally
dominate the optimization process. E.g., an algorithm might initially converge quickly and essentially
throw out other algorithms, and might later get stuck in a local optimum. Some of the slower-moving
algorithms might have better success here, but are no longer part of the meta-optimization. Hence
care has to be taken in the design of the objective function.

239

Chapter 28. Performing Meta-Optimization with Geneva The Geneva Library Collection
2D

 N
o

is
y

P
ar

ab
o

la
 (

fi
tn

es
s

ta
rg

et
 <

=
0.

00
1)

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Best Result (lower is better)

15
0

20
0

25
0

30
0

35
0

40
0

N
um

be
r

of
 s

ol
ve

r
ca

lls
 (

m
ai

n
op

tim
iz

at
io

n
ta

rg
et

)

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Number of parents

1

1.
2

1.
4

1.
6

1.
82

N
um

be
r

of
 p

ar
en

ts
 a

s
a

fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Number of children

1020304050

N
um

be
r

of
 c

hi
ld

re
n

as
 a

 fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Adaption probability

0.
8

0.
850.

9

0.
95

1

A
da

pt
io

n
pr

ob
ab

ili
ty

 a
s

a
fu

nc
tio

n
of

 th
e

ite
ra

tio
n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Lower sigma boundary

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Lo
w

er
 s

ig
m

a
bo

un
da

ry
 a

s
a

fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Upper sigma boundary

3.
4

3.
6

3.
84

4.
2

4.
4

4.
6

4.
85

5.
2

U
pp

er
 s

ig
m

a
bo

un
da

ry
 a

s
a

fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Sigma range

3.
4

3.
6

3.
84

4.
2

4.
4

4.
6

4.
85

D
ev

el
op

m
en

t o
f t

he
 s

ig
m

a
ra

ng
e

as
 a

 fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Sigma-Sigma

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

D
ev

el
op

m
en

t o
f t

he
 a

da
pt

io
n

st
re

ng
th

 a
s

a
fu

nc
tio

n
of

 th
e

ite
ra

tio
n

Figure 28.1.: Meta optimization, shown here on the example of a two-dimensional “Noisy Parabola”,
allows to optimize the parameters of optimization algorithms. The figure in the upper left
corner represents the best average number of solver calls in each iteration. The other
plots show the development of some of the variables being optimized.

240

The Geneva Library Collection 28.3. Letting different Algorithms Compete

8D
 N

o
is

y
P

ar
ab

o
le

 (
fi

tn
es

s
ta

rg
er

 <
=

0.
1)

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Best Result (lower is better)

12
00

14
00

16
00

18
00

20
00

22
00

F
itn

es
s

as
 a

 fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Number of parents

1

1.
2

1.
4

1.
6

1.
82

N
um

be
r

of
 p

ar
en

ts
 a

s
a

fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Number of children

2530354045505560

N
um

be
r

of
 c

hi
ld

re
n

as
 a

 fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Adaption probability

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

A
da

pt
io

n
pr

ob
ab

ili
ty

 a
s

a
fu

nc
tio

n
of

 th
e

ite
ra

tio
n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Lower sigma boundary

0

0.
050.

1

0.
150.

2

0.
250.

3

Lo
w

er
 s

ig
m

a
bo

un
da

ry
 a

s
a

fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Upper sigma boundary

1

1.
52

2.
53

3.
54

4.
55

5.
5

U
pp

er
 s

ig
m

a
bo

un
da

ry
 a

s
a

fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Sigma range

1

1.
52

2.
53

3.
54

4.
55

D
ev

el
op

m
en

t o
f t

he
 s

ig
m

a
ra

ng
e

as
 a

 fu
nc

tio
n

of
 th

e
ite

ra
tio

n

Ite
ra

tio
n

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Sigma-Sigma

0

0.
2

0.
4

0.
6

0.
81

D
ev

el
op

m
en

t o
f t

he
 a

da
pt

io
n

st
re

ng
th

 a
s

a
fu

nc
tio

n
of

 th
e

ite
ra

tio
n

Figure 28.2.: Same procedure as in figure 28.1, albeit for the 8-dimensional noisy parabola

241

Chapter 29.

Coding Conventions

This chapter outlines some guidelines on how to write Geneva code. Note that we consider these
conventions to be more than recommendations. In order to help users to understand the Geneva
code, it appears to be of the utmost importance to adopt a consistent coding style.

By the same token, the Geneva code has evolved over time, and parts of the library might not follow
with our own guidelines. Thus, if you encounter code that does not comply with our rules, you are
encouraged to contact the authors via contact@gemfony.eu .

29.1. Code Documentation

Geneva aims to be as easy to understand as possible. Extensive documentation is therefore of high
importance, and contributors to the code are encourage to document their code thoroughly.

29.1.1. Generating reference documentation, License information

Every file, function and class is prepended by a comment in Doxygen format. The intention is to
generate reference documentation directly from the source code. Doxygen allows to create reference
manuals in different formats, including LATEX and HTML, provided the library authors have complied
with Doxygen’s conventions.

Reference documentation for Doxygen is available from the Doxygen web page[76]. Comments should
be made for all entities that comprise a C++ program, including files, (member-)functions, classes and
variables.

Files

Each file, including code files (both headers and implementation) and scripts, should be prepended
with information regarding the name of the file, the author and copyright, as well as the license under
which the file is offered to users. This may look like this:

Listing 29.1: The file preamble

243

contact@gemfony.eu

Chapter 29. Coding Conventions The Geneva Library Collection

1 / * *
2 * @fi le GParameterBase . hpp
3 * /
4
5 / * Copyr ight (C) Dr . Ruediger B e r l i c h and Kar lsruhe I n s t i t u t e o f Technology
6 * (U n i v e r s i t y o f the State o f Baden−Wuerttemberg and Nat iona l Laboratory
7 * of the Helmholtz Assoc ia t ion)
8 *
9 * Contact : i n f o [a t] gemfony (dot) com

10 *
11 * This f i l e i s pa r t o f the Geneva l i b r a r y , Gemfony s c i e n t i f i c ’ s o p t i m i z a t i o n
12 * l i b r a r y .
13 *
14 * Geneva i s f ree sof tware : you can r e d i s t r i b u t e i t and / or modify
15 * i t under the terms of vers ion 3 of the GNU Af fe ro General Pub l i c License
16 * as publ ished by the Free Software Foundation .
17 *
18 * [Some f u r t h e r i n f o rma t i on]
19 * /

Classes, member functions and data members

All classes should be prepended by a general description of their role, like this:

Listing 29.2: The class preamble
1 namespace Gem {
2 namespace GenEvA {
3
4 / * *
5 * The purpose of t h i s c lass i s to prov ide a common base f o r a l l parameter
6 * classes , so t h a t a GParameterSet can be b u i l t from d i f f e r e n t parameter
7 * types . The c lass a lso def ines the i n t e r f a c e t h a t needs to be implemented
8 * by parameter c lasses .
9 *

10 * Note : I t i s requ i red t h a t der ived classes make sure t h a t a use fu l
11 * opera tor = () i s a v a i l a b l e !
12 * /
13 class GParameterBase
14 : public GMutableI
15 , public GObject
16 {
17 / / [. . .]

Note the /**, which indicates to doxygen that this is a comment that should be included in the reference
documentation.

The declaration of member functions should be prepended by a Doxygen-style brief comment:

Listing 29.3: The brief description before member function declarations

244

The Geneva Library Collection 29.2. Coding Rules

1 / * * @brief The copy cons t ruc to r * /
2 GParameterBase (const GParameterBase &) ;

Definitions of member functions should be prepended by a more thorough description, including a full
explanation of function arguments:

Listing 29.4: The full description before member function definitions
1 / * /
2 / * *
3 * Checks f o r e q u a l i t y w i th another GParameterBase ob jec t
4 *
5 * @param cp A constant re ference to another GParameterBase ob jec t
6 * @return A boolean i n d i c a t i n g whether both ob jec ts are equal
7 * /
8 bool GParameterBase : : operator ==(const GParameterBase& cp) const {
9 / / comparison code

10 }

Definitions of member functions should be separated from each other by a line, as shown in the above
listing.

Stand-alone functions

Stand-alone functions follow the same conventions as member functions.

29.1.2. In-Code Comments

In-code comments are mostly free-style. The coding rules below give a few examples as to how code
should be commented.

29.2. Coding Rules

29.2.1. Function argument lists

In Geneva, argument lists follow certain conventions. First of all, if there are too many arguments,
each argument should be listed on a separate line, like so:

Listing 29.5: Long argument lists should be wrapped
1 void myComplicatedFunction (
2 const double& argument1
3 , const double& argument2
4 , const double& argument3
5 , double& writeToMe
6) {

245

Chapter 29. Coding Conventions The Geneva Library Collection

7 / * some implementat ion * /
8 }

Argument names in header files

Function arguments in header files should be listed without argument name. This facilitates subse-
quent changes of the argument names in the implementation file.

Listing 29.6: Argument names in headers should be omitted

1 class myClass {
2 public :
3 myClass () ; / / / The d e f a u l t cons t r uc to r
4 myClass (const myConstructor&) ; / / / < The copy cons t ruc to r
5
6 const myClass& operator =(const myClass &) ; / / / < Assignment opera tor
7
8 / / [. . .]
9 } ;

Argument names in the actual implementation

Argument names in the actual implementation should as always be descriptive. In the case of setters
for private variables, argument names should reflect the names of the private variable. Likewise the
function name should reflect the name of the variable being set.

Listing 29.7: Arguments to setters of private variables should mimic their name

1 void setMyPrivateVar (const boost : : u i n t 32_ t& myPrivateVar) {
2 myPrivateVar_ = myPrivateVar ;
3 }

Empty argument lists

C++ allows to specify (member-)functions without arguments in two ways:

Listing 29.8: Functions with empty argument lists

1 void myFunctionOne (void) { / * . . . * / }
2 void myFunctionTwo () { / * . . . * / } / / This op t ion should be used

Geneva has adopted the second possibility.

246

The Geneva Library Collection 29.2. Coding Rules

29.2.2. Parentheses and Initialization of Variables

For Functions . . .

Curly brackets should be used in the following way for functions:

Listing 29.9: Parentheses in functions
1 boost : : i n t 3 2 _ t myFunction () {
2 / / Some code here
3 return 1;
4 }

It is often necessary to initialize local variables of a class in constructors. If so, then each initialization
should be on its own line, as should be the opening bracket of the function definition. Furthermore,
commas and the initial colon should be aligned. E.g.:

Listing 29.10: Parentheses in constructors, when initializing member variables
1 myClass : : myClass ()
2 : loca lVar iab leOne (1)
3 , loca lVar iab leTwo (2)
4 {
5 / / Some code
6 }

For Classes and Structs . . .

The conventions for classes and structs are similar to those used for functions. When dealing with a
base class, then the opening bracket should follow the class name:

Listing 29.11: Parentheses in declarations of base classes
1 class myBaseClass {
2 public :
3 myBaseClass () ;
4 } ;

The opening bracket of the class declaration should be on its own line, if the class is derived from one
or more parents. In this case, each parent class should be listed on a new line. The initial colon and
following commas should be aligned.

Listing 29.12: Parantheses in declarations of derived classes
1 class myDerivedClass
2 : public myClass
3 , private boost : : noncopyable
4 {
5 public :
6 myDerivedClass () ;
7 } ;

247

Chapter 29. Coding Conventions The Geneva Library Collection

try/catch blocks

When testing for exceptions, code should be formatted in the following style:

Listing 29.13: Parentheses in try/catch blocks
1 t ry {
2 / / some code t h a t should be tes ted f o r except ions
3 }
4 catch (. . .) {
5 / / Code to be executed when an except ion i s caught
6 }

29.2.3. Descriptive naming schemes

The names of classes, member functions, stand-alone functions and variables should be descriptive,
amalgamating words in the following way:

Listing 29.14: The naming of variables, classes and functions should be descriptive
1 class GParameterBase {
2 public :
3 void se tAdapt ionsAct ive () ;
4 private :
5 bool adapt ionsAct ive_ ;
6 } ;

Note that classes of the core Geneva framework usually start with an upper case G. Another, albeit
rarely used, convention is that the names of interface classes end with uppercase I.

Template classes and structs should end with an upper-case T (as used e.g. in GAdaptorT).

29.2.4. Empty Functions

Empty (member-)functions should be clearly marked as such:

Listing 29.15: Marking empty functions
1 v i r t u a l void ~myClassWithEmptyDestructor ()
2 { / * noth ing * / }

This often plays a role when a destructor is specified, but is empty (which may be useful if it is declared
virtual).

29.2.5. Templates

Templates should generally use the typename placeholder instead of class, as it states the
intent much more clearly. Some more formatting conventions apply:

248

The Geneva Library Collection 29.2. Coding Rules

Template functions

The template statement in template functions should be put on a separate line like so:

Listing 29.16: Formatting template functions
1 template <typename T>
2 bool myTemplateFunction (T var) {
3 / / some code
4 return true ;
5 }

Class templates

Like in the case of template functions, the template statement of class templates should be put
on a separate line. All other conventions regarding the formatting of classes remain valid.

Listing 29.17: Formatting class templates
1 template <typename T>
2 class someClassTemplate {
3 public :
4 void setMyVar (const T& myVar) ;
5
6 private :
7 T myVar_ ;
8 } ;

Member templates

Member templates follow the same conventions as standard function templates:

Listing 29.18: Formatting member templates
1 class myClass {
2 public :
3 myClass () ;
4 v i r t u a l ~myClass () ;
5
6 template <typename T>
7 void doSomeFancyStuff (const T& myVar) {
8 / / Some i n l i n e code
9 }

10 } ;

29.2.6. Namespaces

The closing of namespaces should be clearly marked, like so:

249

Chapter 29. Coding Conventions The Geneva Library Collection

Listing 29.19: The closing brackets of namespaces should be clearly marked
1 namespace Gem {
2 namespace GenEvA {
3
4 / / some code i n s i d e o f namespace scope
5
6 } / * namespace GenEvA * /
7 } / * namespace Gem * /

29.2.7. Include guards

Header files should contain include guards in the following style, in order to prevent multiple inclusion
of the same header and resulting compilation errors.

Listing 29.20: Naming of include guards follows the naming scheme of header files
1 # i fndef MYCLASSHEADER_HPP_
2 #define MYCLASSHEADER_HPP_
3
4 class myClass {
5 / / some code
6 } ;
7 #endif / * MYCLASSHEADER_HPP_ * /

29.2.8. const-correctnes

Quite a comprehensive discussion of the topic of const-correctnes can be found at http://www.
parashift.com/c++-faq-lite/const-correctness.html. The Geneva team
regards this topic as particularly import. All recommendations presented at the above URL should be
followed.

29.2.9. Control Flow

Control statements should be formatted in the following way:

if/else if/else

Listing 29.21: Formatting if statements
1 / *
2 * Some general statements . Mandatory f o r complex cases .
3 * /
4 i f (co n d i t i o n) { / / Opt iona l comment
5 / / some code

250

http://www.parashift.com/c++-faq-lite/const-correctness.html
http://www.parashift.com/c++-faq-lite/const-correctness.html

The Geneva Library Collection 29.2. Coding Rules

6 }
7 else i f (o the rCond i t i on) { / / Opt iona l comment
8 / / some other code
9 }

10 else { / / Opt iona l comment
11 / / code f o r a l l remaining cases
12 }

switch

Listing 29.22: Formatting switch statements
1 / *
2 * Some general statements . Mandatory f o r complex cases .
3 * /
4 switch (value) {
5 / / some o p t i o n a l comment
6 case one :
7 / / some code
8 break ;
9

10 / / some other o p t i o n a l comment
11 case two :
12 {
13 boost : : i n t 3 2 _ t i ; / / o p t i o n a l comment
14 / / some code which requ i res l o c a l v a r i a b l e s
15 }
16 break ;
17
18 defaul t :
19 / / code to be executed i f no other case mathches
20 break ;
21 }

for

Listing 29.23: Formatting for statements
1 / *
2 * Some general statements . Mandatory f o r complex cases .
3 * /
4 std : : vector <double > : : i t e r a t o r i t ;
5 for (i t =myVec . begin () ; i t !=myVec . end () ; ++ i t) { / / o p t i o n a l l o c a l comment
6 / / some code
7 }

Note the general recommendation to prepend the ++. This becomes particularly important when
dealing with iterators (and makes no difference for integer counters).

251

Chapter 29. Coding Conventions The Geneva Library Collection

while

Listing 29.24: Formatting while statements
1 / *
2 * Some general statements . Mandatory f o r complex cases .
3 * /
4 while (c o n d i t i o n) { / / o p t i o n a l l o c a l comment
5 / / some code
6 }

do/while

Listing 29.25: Formatting do/while statements
1 / *
2 * Some general statements . Mandatory f o r complex cases .
3 * /
4 do { / / o p t i o n a l l o c a l comment
5 / / some code
6 }
7 while (c o n d i t i o n) ;

29.2.10. Private variables and get/set-functions

Private variables in classes (including STL containers, local objects, etc.) should be marked with a
trailing underscore like so:

Listing 29.26: Formatting do/while statements
1 class myClass {
2 public :
3 myClass () ;
4
5 void setMyClassVar iable (const boost : : i n t 3 2 _ t& myClassVariable) {
6 i f (myClassVariable%2 == 0)
7 myClassVariable_ = myClassVariable ;
8 else
9 throw () ;

10 }
11
12 boost : : i n t 3 2 _ t getMyClassVariable () const {
13 return myClassVariable_ ;
14 }
15
16 private :
17 boost : : i n t 3 2 _ t myClassVariable_ ;
18 } ;

252

The Geneva Library Collection 29.2. Coding Rules

Setter and getter functions should use the same name as the private variable, but without the under-
score. Also, even if only trivial getter and setter functions are needed (i.e. no checks are performed
by the setter function), class variables should nevertheless be declared private and accompanied by
appropriate getters and setters. Checks in the setter might become necessary at a later time, and
using functions for the access to private variables (instead of declaring them public) makes the code
far more modular and maintainable.

29.2.11. Omitting throw() in member function declarations

In Geneva, member functions are not marked with the exceptions they may throw. An in-depth ratio-
nale is available online in an article by Herb Sutter[67].

29.2.12. Avoiding global variables

Non-const global variables (with the possible exception of Mutex-variables) are not allowed, as Geneva
is a multi-threaded library.

29.2.13. Portable use of integer variables

The Geneva library makes extensive use of the Boost library collection. One reason for this is porta-
bility. Unfortunately C++ does not guaranty a specific size for integer variables. For this reason Boost
has introduced the Standard Integer Types library[5]. Instead of using e.g. an int type, users can
now specify the desired size and signedness of the integer variable, e.g. boost::uint32_t for a 32 bit
unsigned integer. These types are then mapped on matching, platform-dependent local types.

Users of the Geneva library should follow this convention wherever possible. Exceptions to this rule
may occur where external libraries are called, which require e.g. a “short” to be passed as argument.
In this case it is recommended to resort to the boost::numeric_cast<>() function for
additional protection against overflows. It will then throw in DEBUG mode, so you know exactly where
the problem lies.

29.2.14. Defines, macros and const variables

Function macros should be avoided at all costs, as templates usually offer a far better solution than
macros.

Constructs like

Listing 29.27: Defines may not be used for specific values
1 #define SOMENUMBER 3

which are often used to give a number a tell-tale name, may not be used in Geneva. Instead, use the
following:

253

Chapter 29. Coding Conventions The Geneva Library Collection

Listing 29.28: Constant global variables should be used instead of defines

1 const unsigned boost : : u i n t 32_ t SOMENUMBER = 3;

This is far more specific and allows the compiler to warn on type mismatches. Indeed, where const
values need to be supplied as parameters, such global definitions allow different classes to share the
same naming conventions. Values then need to be changed in only one place.

29.2.15. #ifdef

#ifdef’s can be used but should also be avoided in favour of general configuration options. When
using this option, follow the following structure:

Listing 29.29: Begin and end of an #ifdef statement should be clearly marked

1 # i f d e f DEBUG
2 / / some debugging code
3 #endif / * DEBUG * /

29.2.16. Namespaces and Explicit Scope

The Geneva library makes extensive use of the Boost set of libraries, as well as the C++ standard
library. All using statements in the library have been eliminated. Instead, calls to Boost functions
or std functions should be prepended with the scope, such as in the following example:

Listing 29.30: Calls to external library components should be prepended by the explicit scope

1 / / [. . .]
2 std : : vector <boost : : shared_ptr <SomeGenevaClass> > dataVector ;
3 / / [. . .]

So far, for readability reasons, we do not enforce the scope for objects from the Gem::GenEvA names-
pace. Other Gem namespaces (e.g. Gem::Util namespace) must be explicitly mentioned.

29.3. File naming schemes

29.3.1. Descriptive names

The naming of the files that constitute the Geneva library should reflect the main classes contained in
them. Where appropriate, only one class should be stored in one file. An exception to this rule are
little helper classes and structs that are closely related to the main class of the file. Please also note
again the convention that template classes end with an upper-case T (see subsection 29.2.3).

254

The Geneva Library Collection 29.3. File naming schemes

29.3.2. File extensions

The Geneva library follows the convention that header files use the file extension .hpp, while the
actual implementation is contained in files with the extension .cpp.

255

Chapter 30.

Helping Each other

The Geneva library is an Open Source project, targetted at users from industry and science alike. And
parametric optimization is so generic a topic that users of the Geneva library will come from a wide
area of technical disciplines. It is thus one of the most prominent goals of Geneva to help and unite
different fields of knowledge. This chapter wants to give you pointers to where help can be found
and also wants to explain, where you can help, should you have ideas for the future development of
Geneva.

30.1. Finding Help

If you read this chapter, then chances are that you have tried out Geneva and have stumbled upon
a usage-related question, a topic that needs improvement or that is just plain wrong. We have tried
to document the Geneva library thoroughly, and we hope that this manual is a good starting point for
using Geneva. We do not maintain, however, that it is easy to understand under all circumstances.
After all, parametric optimization is a complex topic.

Industrial code is estimated to contain 4–5 errors per 1000 lines of code after delivery. According to
this estimate, Geneva would contain about 500–600 errors of all levels of severity. We do not (and
indeed cannot) promise that Geneva is free of bugs. However, when we are made aware of a problem,
we will aim to solve it whenever possible.

As a user of the Open Source edition, the most direct route to get help is through the Usage mailing
list. Got to our web page http://www.gemfony.eu, then click on Forum. You will see three
forums – Announcements, Usage and Development. We suggest to post your usage-related questions
to the Usage forum. We will monitor the list and try to answer in a timely manner. And chances are
that other users will have stumbled across the same problem before, so they might also be willing to
help.

In order to post in the forum, you will need a Nabble account. Links to the registration are available on
the page listed above.

257

http://www.gemfony.eu

Chapter 30. Helping Each other The Geneva Library Collection

30.1.1. Bug Reports

Reports about possible bugs can be submitted in one of three ways:

• You may post them on the Usage list

• You can also post them through a form on the Gemfony web pagehttp://www.gemfony.
eu (click on the Bug Reports link)

• You can post them through the Launchpad portal (http://www.launchpad.net/
geneva – see the “How to report a bug” link)

No matter which way of submitting a bug you chose, we would like to ask you to make available to us
the following information in order to resolve the problem:

• A description of the way in which you use the Geneva library (type of application, parallelization
mode, . . .)

• An exact description of the system(s) the problem happens on

• A description of the circumstances (what happens, which error messages appear)

• Ideally some code that replicates the problem

Note that, if we cannot reproduce the problem, then chances are that we cannot solve it for you.

30.1.2. As a Commercial User

If you use the Geneva library in a commercial setting and are looking for help, we suggest that you
consider using one of our support and consulting offers. Please contact us for further details via
contact@gemfony.eu. Please also note that we can offer you other licensing options than the
Affero GPL v3.

30.2. Suggesting Improvements

Geneva covers a wide range of possible application scenarios. Given the generic nature of parametric
optimization, however, it is unlikely that we have even covered a small portion of what users want to
do with Geneva. It is thus likely that you will come across a missing feature, or that a given feature
is more complicated than it needs to be. We would thus like to encourage you to make us aware of
possible improvements. The easiest way is to do so on the Usage list accessible through our web
page. Alternatively, please feel free to contact us through contact@gemfony.eu.

30.2.1. Donating Code and Fixing Bugs

You may also donate code and bug fixes to Geneva. Please do contact us with your suggestions via
contact@gemfony.eu. Among the things we are looking for are:

258

http://www.gemfony.eu
http://www.gemfony.eu
http://www.launchpad.net/geneva
http://www.launchpad.net/geneva
contact@gemfony.eu
contact@gemfony.eu
contact@gemfony.eu

The Geneva Library Collection 30.3. Monetary donations

• Implementations of new optimization algorithms (even if they are in pseudo code). We’d ap-
preciate if you accompany your code with a publication of the corresponding algorithm (papers,
discussions of the topic), so we get a better understanding of the scope of the suggestion

• “Standard” individuals for new deployment scenarios

• Cool demos

• Code that improves efficiency

• Integration with new means of parallelization (i.e. Consumers)

• Pinpointing bugs

Note that, depending on the type and amount of code we might have to ask you to sign a transfer
agreement, so that we may include your donation into our code. We have made our own code avail-
able as Open Source, but, as a commercial entity, do rely on the fact that we may also use Geneva
commercially. This requires that we have full control over the code and all rights to use it as is needed.

30.3. Monetary donations

Monetary donations are of course welcome. For example, if you want a given feature to appear in the
Open Source edition within short time, you could decide to sponsor its development. Please contact
us via contact@gemfony.eu .

30.4. Licensing

You have in front of you a copy of a high quality software that has been designed according to high
scientific standards. The typical cost of similar products lies in the range of possibly thousands of
Euros per copy. Yet, you have the opportunity to use this code free of charge, subject to the terms abd
conditions of the GNU Affero General Public License (“AGPL”).

Please note that this does imply responsibilities on your side. Geneva is neither freeware nor can
its code be used without restrictions in other projects. We suggest that you read the license in its
entirety to understand your rights and obligations. It is quoted verbatim in appendix D.1. Copies are
also available at http://www.gnu.org/licenses/, and the text is shipped with the Open
Source version of the Geneva library collection.

30.4.1. The GNU Affero General Public License

Note that the meaning of “derived work” in the Affero GPL is not always clear. In our interpretation of
this term, we follow a statement made by the Free Software Foundation. Note that, under most
circumstances, this means that you, as a user, also accept responsibilities. Please do make sure to
carefully read the AGPL and to comply with its terms and conditions.

259

contact@gemfony.eu
http://www.gnu.org/licenses/

Part IV.

Independent Geneva Libraries

261

Chapter 31.

Creating Random Numbers with Hap

This chapter discusses the creation of random numbers with Geneva’s libhap library. It comprises
two main parts – a random number factory and proxy objects, giving interested parties (individuals,
parameter objects, optimization algorithms) transparent access to a variety of different random num-
ber types and distributions. Production of random numbers is thus centralized, while consumption
happens decentrally. Hap is implemented independently of the optimization use case and can
be used in other projects (subject to the conditions of the library’s license).

Key points: (1) Geneva’s hap library distinguishes between a random number factory and a random proxy (2) The
factory produces random numbers in multiple threads, taking care of the synchronisation of the seeds of all its
random number generators (3) The use of the factory results in better utilization of idle CPU cycles. (4) In the use
case “parametric optimization”, there are idle times in regular intervals (5) The random number proxy presents a
transparent interface to objects in need for random numbers, that allows concurrent access to a pool of random
numbers (6) To users, the proxy looks like a local, independent random number generator (7) Many random number
distributions are modelled in the proxy objects (8) They use internally “raw” random numbers (evenly distributed
random double numbers in the range [0,1[).

31.1. The Random Number Factory

Optimization happens in cycles, with periods of strong activities (e.g. evaluation of individuals) fol-
lowed by relatively calm times (sorting, book-keeping, . . .). Random numbers are used in many
optimization algorithms – high-quality numbers of different characteristics are needed in large
quantities. Many objects may be interested in random numbers, possibly requiring parallel access.
But instantiating individual random number generators in potentially hundreds of thousands of ob-
jects is inefficient and requires synchronization of seeds, so the results of different individuals are not
correlated or, in the worst case, identical.

Geneva has thus centralized the production of random numbers in a factory class, which is accessed
through a singleton. It produces evenly distributed double random numbers in the range [0,1[concur-
rently in a small1 number of threads. Arrays of random numbers are added to thread-safe buffers, until

1The exact number is usually modelled after the number of processing units in the system, but can also be set by hand.

263

Chapter 31. Creating Random Numbers with Hap The Geneva Library Collection

these reach their maximum capacity2.

The synchronization of the seeds of the random number generators in the producer threads is han-
dled internally in the factory. In particular, it has been taken care that the various random number
generators are not seeded with correlated numbers. Instead, seeds are taken from a random number
generator itself3.

Once the buffers are full, the producer threads block (in particular this means that they do not consume
any computing power when blocked) and only continue to add random number arrays to the buffer
once there is free space again. Consumers of random numbers can concurrently retrieve the random
number buffers from the thread-safe queue when needed.

Given a sufficient number of producer threads, random numbers will thus be predominently produced
in periods of low activity of the optimization algorithm, while a sufficient amount of random numbers is
available when needed by the optimization algorithms.

The random number factory will be instantiated without any direct interaction by the user. All that
needs to be done is to include the header file GRandomT.hpp in your code.

31.2. The Random Number Proxy GRandom

In order to shield users of random numbers from having to deal with the random number factory
directly, Geneva comprises a proxy class GRandom, which handles the interaction with the factory
behind the scenes. Users can ask for a double random number at any time. When a local random
number buffer is available and not exhausted, the random numbers are taken from there. Once it is
empty, a new buffer is obtained from the factory and stored locally. To the user, the proxy thus looks
exactly like a local random number generator.

GRandom models various random number distributions and random number types. These are pro-
duced from the “raw” double values obtained from the factory.

Access to the random number proxy is possible by instantiating the GRandom class. See the exam-
ples in section 31.2.1 for further information.

31.2.1. Random Number Types and Distributions

This section gives an overview of the available random number types and distributions in GRandom.
All code samples are also available in the Geneva distribution, in the example05_GHapUsagePat-
terns. Figures 31.1, 31.2 and 31.3 illustrate some of the distributions.

2Production of random numbers could even happen in a different location, such as on a GPGPU. Note, though, that this
is not currently implemented in Geneva.

3We have observed in our tests that a particular generator type produced highly correlated random number sequences
when adjacent seeds were used.

264

The Geneva Library Collection 31.2. The Random Number Proxy GRandom

Figure 31.1.: Floating-point and integer random numbers can be constrained in their value ranges.

Figure 31.2.: Two types of gaussian distributions are availble – a standard gaussian with a user-
defined mean and σ, and two gaussians of equal σ superimposed. Both are used
as part of mutation operators in Evolutionary Algorithms (compare chapter 4.2.2).

Uniform double random numbers in the range [0,1[

The GRandom::uniform_01<double>() function is just a wrapper around the function
used to retrieve random number packages from the factory. This is the native random number type of
Geneva and has the least overhead. Listing 31.1 shows how to use this function.

Listing 31.1: Uniformly distributed double random numbers in the range [0,1[
1 #include " hap /GRandomT. hpp "
2
3 const i n t NPROD = 1000;
4
5 / / A l l GRandom−r e l a t e d code i s i n the namespace Gem: : Hap
6 using namespace Gem: : Hap ;
7
8 i n t main (i n t argc , char ** argv) {
9 / / I n s t a n t i a t e a random number generator

10 GRandom gr ;

265

Chapter 31. Creating Random Numbers with Hap The Geneva Library Collection

Figure 31.3.: Boolean random numbers can either be produced with a pre-defined probability distribu-
tion for true and false or an even likelihood for both.

11
12 double d_even_01 = 0 . ;
13
14 for (i n t i =0; i <NPROD; i ++) {
15 / / Random numbers w i th an even d i s t r i b u t i o n o f
16 / / double values i n the range [0 , 1 [
17 d_even_01 = gr . uniform_01 <double > () ;
18
19 / / Note : GRandomBase def ines an opera tor () , hence
20 / / you could a lso use gr () to ob ta in a random number
21 / / o f t h i s type .
22 }
23
24 return 0;
25 }

Uniform double values in the range [0,m a x [

TheGRandom::uniform_real(const double&) function creates uniformly distributed
double random numbers in the range [0,m a x [. Internally, GRandom::uniform_real(const
double&) wraps the GRandom::uniform_01<double>() function.

The usage example in listing 31.2 concentrates on the calling conventions and omits the header file
and main() function. See listing 31.1 for a complete example.

Listing 31.2: Uniformly distributed double random numbers in the range [0,m a x [
1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3
4 double max=10. ;
5 double d_even_0_max = 0 . ;
6

266

The Geneva Library Collection 31.2. The Random Number Proxy GRandom

7 for (i n t i =0; i <NPROD; i ++) {
8 / / Random numbers w i th an even d i s t r i b u t i o n o f
9 / / double values i n the range [0 . , max [

10 d_even_0_max = gr . un i fo rm_rea l <double >(max) ;
11
12 / / The f o l l o w i n g form i s a lso poss ib le , as the
13 / / template type can be determined from the type of max
14 d_even_0_max = gr . un i fo rm_rea l (max) ;
15 }

Uniform double values in the range [m i n ,m a x [

TheGRandom::uniform_real(const double&, const double&) function cre-
ates uniformly distributed double random numbers in the range [m i n ,m a x [. Internally, the function
wraps the GRandom::uniform_01<double>() function. Note that max may also be neg-
ative.

Listing 31.3: Uniformly distributed double random numbers in the range [m i n ,m a x [
1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3
4 double min =0. , max=10. ;
5 double d_even_min_max = 0 . ;
6
7 for (i n t i =0; i <NPROD; i ++) {
8 / / Random numbers w i th an even d i s t r i b u t i o n o f
9 / / double values i n the range [0 . , max [

10 d_even_min_max = gr . un i fo rm_rea l <double >(min , max) ;
11
12 / / The f o l l o w i n g form i s a lso poss ib le , as the
13 / / template type can be determined from the type of min /max
14 d_even_min_max = gr . un i fo rm_rea l (min , max) ;
15 }

Normal Distribution with mean==0 and σ==1

Particularly evolutionary strategies need random numbers with a gaussian distribution. This is the
most simple form of this random number type, as provided by the GRandom class. Internally, two
double random numbers in the range [0,1[are used to create two random number with a gaussian
distribution.

Listing 31.4: Random numbers with a normal distribution (mean==0, σ==1

1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3

267

Chapter 31. Creating Random Numbers with Hap The Geneva Library Collection

4 double d_std_gauss = 0 . ;
5
6 for (i n t i =0; i <NPROD; i ++) {
7 / / A normal (" gaussian ") d i s t r i b u t i o n o f random numbers
8 / / w i th mean 0 and sigma 1
9 d_std_gauss = gr . n o r m a l _ d i s t r i b u t i o n <double > () ;

10 }

Normal Distribution with mean==0 and configurable σ

This function creates random numbers with a gaussian distribution, a mean value of 0 and a config-
urable σ value.

Listing 31.5: Random numbers with a normal distribution, mean 0 and configurable σ
1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3
4 double d_gauss_sigma = 0 . ;
5 double sigma = 2 . ;
6
7 for (i n t i =0; i <NPROD; i ++) {
8 / / A normal (" gaussian ") d i s t r i b u t i o n o f random numbers
9 / / w i th mean 0 and sigma " sigma "

10 d_gauss_sigma = gr . n o r m a l _ d i s t r i b u t i o n <double >(sigma) ;
11
12 / / Note : Thanks to the " double " argument you could leave out
13 / / the <double > here
14 }

Normal Distribution with configurable mean and σ

This function creates random numbers with a gaussian distribution, with configurable mean and σ
values.

Listing 31.6: Random numbers with a normal distribution (configurable mean and σ)
1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3
4 double d_gauss_mean_sigma = 0 . ;
5 double mean = 1 . ;
6 double sigma = 2 . ;
7
8 for (i n t i =0; i <NPROD; i ++) {
9 / / A normal (" gaussian ") d i s t r i b u t i o n o f random numbers

10 / / w i th con f i gu rab le mean and sigma
11 d_gauss_mean_sigma = gr . n o r m a l _ d i s t r i b u t i o n <double >(mean , sigma) ;

268

The Geneva Library Collection 31.2. The Random Number Proxy GRandom

12
13 / / Note : Thanks to the " double " argument you could leave out
14 / / the <double > here
15 }

Bi-Normal Distribution with Equal σ

This function adds two gaussians, centered around mean “mean”, with a configurable (but equal) σ,
a distance "distance" from each other. The idea is to use this function in conjunction with evolutionary
strategies, so we avoid searching with the highest likelihood at a location where we already know a
good value exists. Rather we want to shift the highest likelihood for probes a bit further away from the
candidate solution.

Listing 31.7: Random numbers with a bi-normal distribution (configurable mean and configurable, but
identical σ)

1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3
4 double d_bi_gauss ;
5 double mean = 1 . ;
6 double sigma = 2 . ;
7 double d is tance = 3 . ;
8
9 for (i n t i =0; i <NPROD; i ++) {

10 d_bi_gauss
11 = gr . b i _ n o r m a l _ d i s t r i b u t i o n <double >(mean, sigma , d is tance) ;
12 }

Bi-Normal Distribution with different σ values

This function adds two gaussians with sigmas "sigma1", "sigma2" and a distance of "distance" from
each other, centered around mean. The idea is to use this function in conjunction with evolutionary
strategies, so we avoid searching with the highest likelihood at a location where we already know a
good value exists. Rather we want to shift the highest likelihood for probes a bit further away from the
candidate solution.

Listing 31.8: Random numbers with a bi-normal distribution (configurable mean and configurable σ
values)

1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3
4 double d_bi_gauss_di fs igma ;
5 double mean = 1 . ;
6 double sigma1 = 2 . ;
7 double sigma2 = 1 . ;

269

Chapter 31. Creating Random Numbers with Hap The Geneva Library Collection

8 double d is tance = 3 . ;
9

10 for (i n t i =0; i <NPROD; i ++) {
11 d_bi_gauss_di fs igma
12 = gr . b i _ n o r m a l _ d i s t r i b u t i o n <double >(mean , sigma1 , sigma2 , d is tance) ;
13 }

Boolean Random Numbers

This function produces boolean random numbers with an equal likelihood for true and false.

Listing 31.9: Boolean Random numbers with equal probability for true and false
1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3
4 bool bool_rnd = true ;
5
6 for (i n t i =0; i <NPROD; i ++) {
7 bool_rnd = gr . uni form_bool () ;
8 }

Boolean Random Numbers with Configurable Probability

This function produces boolean random numbers with a configurable probability for true (and
true).

Listing 31.10: Boolean Random numbers with individual probability for true and false
1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3
4 bool bool_rnd_weight = true ;
5 double prob = 0 .25 ; / / 25% p r o b a b i l i t y f o r " t r ue "
6
7 for (i n t i =0; i <NPROD; i ++) {
8 bool_rnd_weight = gr . weighted_bool (prob) ;
9 }

Integer Random Numbers with Configurable min/max

This function produces integer random numbers inside (and including) a range [min,max].

Listing 31.11:]Integer Random numbers in range [min, max]
1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;

270

The Geneva Library Collection 31.2. The Random Number Proxy GRandom

3
4 boost : : i n t 3 2 _ t int_rand_min_max = 0 . ;
5 boost : : i n t 3 2 _ t min = −10, max = 10;
6
7 for (i n t i =0; i <NPROD; i ++) {
8 int_rand_min_max = gr . un i f o rm_ in t (min , max) ;
9

10 / / Note : There i s another f u n c t i o n opt imized f o r smal l i n t ege rs :
11 int_rand_min_max = gr . un i f o rm_sma l l i n t (min , max) ;
12 }

Integer Random Numbers with Configurable max

This function produces integer random numbers inside (and including) a range [0,max].

Listing 31.12:]Integer Random numbers in range [0, max]
1 / / I n s t a n t i a t e a random number generator
2 GRandom gr ;
3
4 boost : : i n t 3 2 _ t int_rand_max = 0 . ;
5 boost : : i n t 3 2 _ t max = 10;
6
7 for (i n t i =0; i <NPROD; i ++) {
8 int_rand_max = gr . un i f o rm_ in t (max) ;
9

10 / / Note : There i s another f u n c t i o n opt imized f o r smal l i n t ege rs :
11 int_rand_min_max = gr . un i f o rm_sma l l i n t (min , max) ;
12 }

271

Chapter 32.

Brokering with the Courtier Library

This chapter discusses Geneva’s Courtier library. As its core component, it includes a broker, which
is complemented with a number of special purpose consumers. Jointly they form a generic system for
the submission of work items to compute units, whose nature is determined by the consumer being
used. Producers can submit work items to the broker through a generic interface. The GBroker-
Connector2T class helps producers to submit and retrieve work items to/from the broker, and to
handle missing responses.

Note that this chapter describes techniques that you will not usually have to deal with directly,
if you are a user of a Geneva-based optimization application. However, the library might come in
handy when designing a custom work submission system.

Key points: (1) Four main components make up Geneva’s broker architecture: The broker itself, consumers,
buffer ports and the GBrokerConnector2T class (2) Consumers process work items either locally or submit
them to remote sites (3) Buffer ports contain two thread-safe queues, one for raw and one for processed items.
(4) Multiple consumer and buffer port objects can be plugged into the broker. (5) Producers submit work items to
the buffer ports’ raw queues (6) Upon request from the consumer, the broker queries the buffer ports raw queues
and hands the work items to the consumer (7) The consumer takes care that the work items get worked on
(8) Processed work items are handed back to the “processed” queue of the buffer port (9) Work items particularly
need to implement the bool process() function and need to be able store and retrieve an id associated
with them (10) It is not guaranteed that work items passing through a consumer actually return (e.g. in the case
of networked execution) (11) Producers thus need to be aware that not all submitted items might return (12) Fault
tolerance is achieved through the GBrokerConnector2T class, which can take care of all communication
with the broker for the producers, and handle missing responses.

The following section discusses the broker, including its architecture and the available configuration
options. Note that the entire system is template-based. So except for very few interface functions,
Courtier does not make any assumptions regarding the work items being processed by the system.

273

Chapter 32. Brokering with the Courtier Library The Geneva Library Collection

Figure 32.1.: Several entities may submit items simultaneously through “buffer ports”, which are
plugged into the broker. The broker will deliver items in a round-robin fashion to one
or more consumers that ask for work items. Consumers might then deliver the work
items to remote sites, or process them locally (depending on the consumer type). Re-
sults are shipped back to the original buffer port, from where they can be retrieved by
the producer.

32.1. Architecture

The broker sits at the heart at the entire task submission system. Its architecture can be easily
understood when looking at figure 32.1.

32.1.1. Buffer Ports

Entities (called “E” in this section) wishing to submit work items for further processing may register
“buffer ports” with the broker. A buffer port contains two thread-safe queues, to which items may be
concurrently written to and read from1. The first queue is used for the submission of “raw” work items,
and processed items can be retrieved by E from the second queue. More than one buffer port may be
plugged into the broker simultaneously.

1See section 33.1 on page 281 for a detailed description of the thread-safe queue.

274

The Geneva Library Collection 32.1. Architecture

32.1.2. Consumers

A consumer is a class that initiates the processing of work items. In the easiest case2 it will just spawn
a number of threads for the local processing of work items on the available CPU cores.

Consumers may also wait for connections of networked clients. They will then need to care for the
serialization of work items (which is built in already into Geneva’s optimization-related classes), ship
the data to the remote entity and give back processed items to the broker.

Geneva’s Courtier library currently implements the following consumers:

• GBoostThreadConsumerT processes work items in parallel in a number of threads. By
default, it will try to start as many threads as computing cores are available on the system.

• GAsioTCPConsumerT uses the Boost.ASIO library to ship serialized work items to
networked clients. The GAsioTCPClientT class can be used to implement networked
clients with ease.

• GSerialConsumerT is meant for debugging only. It processes one work item after the
other locally.

We plan to add a consumer for the Message Passing Interface (MPI) soon. Given the separation
between consumer implementation and job submission shown in figure 32.1, the task is expected to
be simple from a technical perspective.

Communication with a GPGPU through OpenCL has been implemented, but has not been made
available publicly.

32.1.3. Fault Tolerance

Note that it is not guaranteed that all work items that pass through a consumer actually do return.
This is particularly true when dealing with networked execution. Hence producers who submit work
items to the broker need to be able to deal with missing responses. See section 32.5 for one way of
achieving fault tolerance.

32.1.4. Work Flow

The broker’s work flow is driven by the consumers. When a consumer requests a work item, the broker
will query the available buffer ports in succession and hand available work items to the consumer. The
consumer will then take care to process the item locally or ship it to remote work units.

Processed work items are handed back to the broker, which checks the id of the originating buffer port
and adds the work item to it. The producer E may then retrieve the final result from the queue.

2. . . intended for production use

275

Chapter 32. Brokering with the Courtier Library The Geneva Library Collection

32.2. Requirements for Work Items

The broker is implemented as a template library. Hence it assumes a specific interface available for
work items. If you are interested in the details, have a look at the GSubmissionContainerT
class in the Geneva distribution. It may (but does not need to) serve as the base class of work items
submitted to the broker. Work items must implement the following functionality (or acquire it by deriving
from GSubmissionContainerT):

• bool process() triggers the processing of a work item. All processing logic needs to be
implemented by the work item. The function returns a boolean which should indicate whether
processing has lead to a useful result. This may be used by remote entities to decide whether
processed items should be shipped back to the broker. E.g. in optimization algorithms, if the
processing of an individual didn’t lead to an improved fitness, the remote client may decide to
discard the work item completely, based on the result of the process() call. Implemen-
tation of this function is required even when deriving from GSubmissionContain-
erT, as it is purely virtual there.

• A work item must be able to store what is called a “courtier id”. It has the typeboost::tuple-
<Gem::Courtier::ID_TYPE_1, Gem::Courtier::ID_TYPE_2>. The id
is used to identify the buffer port from which the work item has originated. Implementation of
this function may be omitted when deriving from GSubmissionContainerT.

• A work item must implement the setCourtierId() and getCourtierId() func-
tions, so the broker can set and get the id. Implementation of this function may be omitted when
deriving from GSubmissionContainerT.

void loadConstantData(boost::shared_ptr<T>) is an optional function. When
implemented by derived classes, work items holding large amounts of constant data may be deposited
at a remote site as part of the client code. The work item then needs to implement code to load the
constant data from the other entity (which has the same type as the work item). This can help reduce
the amount of data to be serialized and shipped to remote locations.

When a networked consumer is used, work items also need to be serializable using the conventions
of the Boost.Serialization library. See the discussion of loadConstantData()
above for how to avoid serializing large amounts of constant data3.

32.3. Accessing the Broker

The broker is implemented as a global singleton. User-code should #include "courtier/-
GBrokerT.hpp". The broker can then be accesses through a call to GBROKER(T), where
T represents the type of the work item. As an example, the broker used for shipping the Geneva
optimization system’s individuals to consumers can be accessed through GBROKER(Gem::Gen-
eva::GParmameterSet).

3Example: Training data of a neural network

276

The Geneva Library Collection 32.4. Configuration Options of the Broker

32.4. Configuration Options of the Broker

There aren’t many configuration options for the broker, as most of the real action happens on the level
of the consumers. Unless you intend to write your own consumer, the only options you need to know
are both called enrol(). One accepts buffer ports wrapped in a boost::shared_ptr, the
other accepts a consumer which is also wrapped into a boost::shared_ptr.

The function void enrol(boost::shared_ptr<GBufferPortT<boost::sha-
red_ptr<work_item> > >) allows you to register a buffer port object with the broker. The
buffer port accepts a work item, which is again wrapped into a smart pointer. More than one buffer
port may be enrolled with the broker.

void enrol(boost::shared_ptr<GConsumer>) expects a boost::shared-
_ptr<> to a consumer. The broker only talks to the consumer base class and does not know what
a particular consumer does. More than one consumer may be enrolled with the broker.

We strongly recommend to typedef the arguments of enrol() – we only show them here
in full beauty so you understand what the function expects.

32.5. Submission of Work Items

It is usually not necessary for producers of work items to talk directly to the broker. Instead, it is
recommended to use the GBrokerConnector2T class. It will instantiate a buffer port object for
you and establish the connection to the broker.

Three different working modes exist, which are specified as a constructor argument (typeGem::Cour-
tier::submissionReturnMode):

• INCOMPLETERETURN means that it is expected that some work items of the current sub-
mission cycle might not return. The GBrokerConnector2T object will then calculate a
suitable timeout and return to the caller, even if not all work items have returned. If all work
items have returned to the caller before the timeout, the GBrokerConnector2T object
will return to the caller immediately. In the context of parametric optimization, this mode is use-
full in all cases where an optimization algorithm can cope with missing returns and repair itself.
This is e.g. the case with Evolutionary- and Swarm Algorithms.

• RESUBMISSIONAFTERTIMEOUT means that work items that have not returned after a
timeout will be resubmitted to the broker. There is a configurable maximum number of resub-
missions. It may happen that the same work item returns more than once (e.g. a work item
from the first submission and one from a re-submission). Redundant work items are discarded
and the GBrokerConnector2T keeps track of which work items have returned. In the
context of parametric optimization this mode is usefull for gradient descents, as these cannot
continue without all work items having returned.

• EXPECTFULLRETURN means that GBrokerConnector2T will wait indefinitely for
returns. This mode of operation is useful in situations where one is sufficiently sure that all work
items will return, e.g. in the case of a multi-threaded consumer, or possibly also in a cluster

277

Chapter 32. Brokering with the Courtier Library The Geneva Library Collection

environment with an MPI-Consumer4. Choosing this mode avoids the overhead associated
with the other two modes.

It then provides you with an interface to submit work items to the broker using different variants of the
workOn member function:

Listing 32.1: Work submission with exact control over which work items should be submitted, which
items did not return, plus retrieval of work items from previous job submissions

1 bool workOn (
2 std : : vector <boost : : shared_ptr <processable_type > >& workItems
3 , s td : : vector <bool>& workItemPos
4 , s td : : vector <boost : : shared_ptr <processable_type > >& oldWorkItems
5 , const std : : s t r i n g& o r i g i n a t o r = s td : : s t r i n g ()
6) ;

The variant shown in listing 32.1 accepts a std::vector of work items, a std::vector of boolean values in-
dicating which work items should be submitted5, and a std::vector for storing work items from previous
job submissions. A boolean return value indicates, whether all submitted work items have returned.

When the function has returned, the workItems vector might hold a mixture of successfully pro-
cessed and “raw” work items that could not be processed. The workItemPos vector will hold
the value Gem::Courtier::GBC_PROCESSED at the position of each work item that has
been processed successfully, and Gem::Courtier::GBC_UNPROCESSED for every unpro-
cessed work item. Thus, if all work items were processed, all entries of workItemPos are set to
GBC_PROCESSED.

As the function may return after a timeout, before all work items of the current submission have
returned, we also need a storage location for older items. They are put into the oldWorkItems
vector and are always processed.

As a final, optional argument it is possible to give the function information on the caller. This is helpfull
for debugging messages and strictly optional.

Listing 32.2: Work submission in a range, plus retrieval of work items from previous job submissions
1 bool workOn (
2 std : : vector <boost : : shared_ptr <processable_type > >& workItems
3 , const boost : : tup le <std : : s i ze_ t , s td : : s i ze_ t >& range
4 , s td : : vector <boost : : shared_ptr <processable_type > >& oldWorkItems
5 , const bool& removeUnprocessed = true
6 , const std : : s t r i n g& o r i g i n a t o r = s td : : s t r i n g ()
7) ;

The workOn-variant in listing 32.2 accepts an index range instead of an array of specific positions
as input, in addition to the workItems vector. It does not, however, return the positions of workItems
that did not return from processing. Instead, by default, such work items will be erased from the

4. . . which has so far not been implemented
5A value of Gem::Courtier::GBC_UNPROCESSED indicates that this is a work item that is still unprocessed

and needs processing. A value of Gem::Courtier::GBC_PROCESSED indicates that this item is already
processed and does not need to be submitted

278

The Geneva Library Collection 32.5. Submission of Work Items

workItems vector, unless the caller specifically instructs the function not to do this. As in the
previous version, completed work items from previous submission cycles will be stored in the old-
WorkItems vector.

Listing 32.3: Work submission in a range, plus retrieval of work items from previous job submissions
1 bool workOn (
2 std : : vector <boost : : shared_ptr <processable_type > >& workItems
3 , s td : : vector <boost : : shared_ptr <processable_type > >& oldWorkItems
4 , const bool& removeUnprocessed = true
5 , const std : : s t r i n g& o r i g i n a t o r = std : : s t r i n g ()
6)

The final workOn-variant shown in listing 32.3 works similar to 32.2, but submits all items in the
workItems vector.

279

Chapter 33.

Common Functionality and Classes

This chapter describes miscellaneous classes and utility functions that have been implemented for the
Geneva library. They are available through the common library. Note that, over time, some of these
classes might become independent libraries.

Key points: (1) Geneva’s thread-safe queue allows concurrent threads to read and write simultaneously. It takes
into account allowed maximum sizes of the queue. Producers and consumers will inform each other once an empty
queue has been filled again or space has again become available if the queue was full. Blocked threads will thus
not consume compute time. (2) The raiseException macro emits gemfony_error_condition
objects, which are in addition equipped with diagnostic information about the location where the error has oc-
curred. (3) The GParserBuilder class implements a complete framework for creating and parsing config-
uration files in JSON format (4) The GFactoryT<> class template allows to implement factoy classes that
produce custom objects and read options from a configuration file. (5) Geneva’s Singleton implementation emits
boost::shared_ptr<> smart pointers in order to reduce the dependencies between different singletons
using each others services (6) The GGlobalOptionsT<> class template can be used to store arbitrary data
at a global scope. (7) The GThreadGroup class template implements a simple thread group. It is based on
the corresponding Boost class. (8) The GThreadPool class template implements a simple thread pool (9) The
GPlotDesigner lets you create ROOT scripts for your data with relative ease

33.1. A Thread-Safe Queue

The Geneva optimization library is heavily multithreaded, from the implementation of a global random
number factory to the concurrent evaluation of individuals. Thus, thread-safe queues as a means
of concurrently submitting and retrieving data and work items from multiple threads were needed.
They have been implemented in the GBoundedBufferT template1. Geneva’s implementation
is based on the bounded_buffer_comparison.cpp example by Jeff Garland, which is
shipped together with the Boost library collection.

1Note that also a GBoundedBufferWithIdT class exists which adds a unique id to GBoundedBufferT, in
order to make it recognizable by Geneva’s broker.

281

Chapter 33. Common Functionality and Classes The Geneva Library Collection

Note that the actual implementation in the Geneva library is more elaborate, offering for example
pushs and pops with a timeout. Listing 33.1 illustrates the general principles2.

Listing 33.1: General principles of a thread-safe queue

1 template <class T>
2 class TSQueue {
3 public :
4 e x p l i c i t TSQueue(s td : : s i z e _ t capac i t y) : capac i ty_ (capac i t y) { }
5
6 void push_f ront (T i tem) {
7 boost : : unique_lock <boost : : mutex> lock (mutex_) ;
8 n o t _ f u l l _ . wa i t (lock , boost : : b ind (&TSQueue<T > : : i s _ n o t _ f u l l , th is)) ;
9 conta iner_ . push_f ront (i tem) ;

10 lock . unlock () ;
11 not_empty_ . no t i f y_one () ;
12 }
13
14 void pop_back (T* pItem) {
15 boost : : unique_lock <boost : : mutex> lock (mutex_) ;
16 not_empty_ . wa i t (lock , boost : : b ind (&TSQueue<T > : : is_not_empty , th is)) ;
17 * pItem = conta iner_ . back () ;
18 conta iner_ . pop_back () ;
19 lock . unlock () ;
20 n o t _ f u l l _ . no t i f y_one () ;
21 }
22
23 private :
24 TSQueue(const TSQueue&) ; / / I n t e n t i o n a l l y p r i v a t e and undef ined
25 TSQueue& operator =(const TSQueue&) ; / / I n t e n t i o n a l l y p r i v a t e and undef ined
26
27 bool is_not_empty () const { return conta iner_ . s ize () > 0 ; }
28 bool i s _ n o t _ f u l l () const { return conta iner_ . s ize () < capac i ty_ ; }
29
30 const std : : s i z e _ t capac i ty_ ;
31
32 std : : deque<T> conta iner_ ;
33
34 boost : : mutex mutex_ ;
35 boost : : c o n d i t i o n _ v a r i a b l e not_empty_ ;
36 boost : : c o n d i t i o n _ v a r i a b l e n o t _ f u l l _ ;
37 } ;

It would be comparatively easy to create a thread-safe queue, simply by protecting each access to the
std::deque<> with a Mutex. However, such an implementation does not take into account that
the queue may be empty or that its size might have reached a user-defined upper limit. Producers
and consumers would thus have to implement a “busy wait” until space becomes available again in
the queue or items have been added.

2. . . but does not represent the actual implementation, which is too long to be shown here. See also the excellent book
“Concurrency in Action” by Anthony Williams [144] for an in-depth introduction into the topic.

282

The Geneva Library Collection 33.2. Raising Exceptions and Logging

It would be much nicer if producers could inform consumers (and vice versa), once this has happened.
In Boost (and the new C++11 thread facilities, which are modelled after Boost.Thread), this can be
done with the help of condition variables. This is realized in listing 33.1 as well as in the more complex
Geneva implementation.

33.2. Raising Exceptions and Logging

Geneva implements its own exception class, meant to facilitate raising exceptions. Its main addition
over standard exception classes is that it is possible to store a text in it, by passing a string to the
constructor. It is also possible to submit the class – called gemfony_error_condition – to
a stream, thus facilitating the output of stored data. Two possibilities exist for raising exceptions.

33.2.1. raiseException

A macro with the name of raiseException() facilitates raising these exceptions. It also
adds information about the location of the “throw” to the output. Note that the output is specific to
the Geneva library, as it also asks the user to submit bug reports, should an error occur. Usage of
raiseException() is shown in listing 33.2.

Listing 33.2: Raising exceptions with a Geneva macro

1 [. . .]
2 i n t someInt = 0 ;
3
4 t ry
5 {
6 i f (someInt = 1) { / / This w i l l always t r i g g e r
7 ra iseExcept ion (
8 " Got someInt == " << someInt << std : : endl
9 << "You might want to w r i t e \ " i f (1 == someInt) \ " next t ime " << std : : endl

10 << " This way the compi ler w i l l catch a missing \ " = \ " " << std : : endl
11) ;
12 } else {
13 std : : cout << someInt << std : : endl ;
14 }
15 } catch (Gem: : Common : : gemfony_error_condi t ion e) {
16 std : : cout << " The end i s near : " << std : : endl
17 << e << std : : endl ;
18 std : : te rmina te () ;
19 }
20
21 [. . .]

Listing 33.3 shows an example of what an exception might look like. Note that we have submitted the
exception class directly to to the stream.

283

Chapter 33. Common Functionality and Classes The Geneva Library Collection

Listing 33.3: Raising exceptions with a Geneva macro

1 ERROR i n f i l e / home / developer / Geneva / src / geneva / GMultiThreadedEA . cpp
2 near l i n e 212 wi th d e s c r i p t i o n :
3
4 In GMultiThreadedEA : : f i n a l i z e () :
5 I n v a l i d number o f serverMode f l a g s : 1000/100
6
7 I f you suspect t h a t t h i s e r r o r i s due to Geneva ,
8 then please cons ider f i l i n g a bug v ia
9 h t t p : / / www. gemfony . eu (l i n k "Bug Reports ") or

10 through h t t p : / / www. launchpad . net / geneva
11
12 We apprec ia te your help !
13 The Geneva team

On a side note, this means that the algorithm had expected a given number of flags (preventing re-
evaluation), but has found a population size exceeding the number of flags. The (now corrected) error
happened as a consequence of the ability of Geneva’s evolutionary algorithm populations to grow.

33.2.2. glogger for exception handling

The raiseException macro is rather light-weight. A more heavy-weight (but far more versatile)
possibility for raising exceptions in Geneva is the GLogger class, and the supplied global singleton
glogger. It is available as soon as you have included the GLogger.hpp header and linked
with the Common library. Once this is done, code like it is shown in listing 33.4 becomes possible.

Listing 33.4: Raising exceptions with glogger

1 [. . .]
2 i n t someInt = 0 ;
3 t ry {
4 i f (someInt = 1) { / / This w i l l always t r i g g e r
5 glogger
6 << " Got someInt == " << someInt << std : : endl
7 << "You might want to w r i t e \ " i f (1 == someInt) \ " next t ime " << std : : endl
8 << " This way the compi ler w i l l catch a missing \ " = \ " " << std : : endl
9 << GEXCEPTION;

10 } else {
11 std : : cout << someInt << std : : endl ;
12 }
13 } catch (Gem: : Common : : gemfony_error_condi t ion e) {
14 std : : cout
15 << " The end i s near : " << std : : endl
16 << e << std : : endl ;
17 std : : te rmina te () ;
18 }
19 [. . .]

284

The Geneva Library Collection 33.2. Raising Exceptions and Logging

So it becomes possible to actually stream any kind of information to glogger that could otherwise be
streamed to a normal std::cout. The “manipulator” GEXCEPTIONmakes sure an exception is
raised, complete with diagnostic information about the location of the error (file name and approximate
line of code inside of the file)3.

The output will be very similar to the one shown for the raiseException macro, but will in addi-
tion be complemented with a time stamp and logged to a file named GENEVA-EXCEPTION.log.

Note that the exception is indeed raised through a global singleton, so that no information
should be lost, even when the exception is raised from within a thread without a try/catch
block.

A modifier GTERMINATE instead of GEXCEPTION will internally call std::terminate,
which (arguably) might be more suitable for usage inside of a constructor. The output will appear
on the console as well as in a file named GENEVA-TERMINATION.log.

33.2.3. glogger for logging

The glogger class has further abilities, such as logging and emitting warning messages. The first
step for accessing this functionality is to register “log targets” with the GLogger class.

Logging is done through each of the channels identified through these objects. Geneva comes
equipped with two log targets by default, the GConsoleLogger class, which will output infor-
mation to the console (through std::cout), and the GFileLogger class, whose output ends up in
a file4.

Such logging targets can be registered through code such as the one shown in listing 33.5.

Listing 33.5: Adding log targets to the logger

1 [. . .]
2 boost : : shared_ptr <GBaseLogTarget> g c l _ p t r (new GConsoleLogger ()) ;
3 boost : : shared_ptr <GBaseLogTarget> g f l _ p t r (new GFileLogger (" . / somePathToLogFile . t x t ")) ;
4
5 glogger . addLogTarget (g c l _ p t r) ;
6 g logger . addLogTarget (g f l _ p t r) ;
7 [. . .]

Once log targets have been registered, it is possible to perform logging in a very similar way to the
procedure shown in section 33.2.2 exception handling. However, instead of GEXCEPTION, one
should use the GLOGGING manipulator. Output will be written to the channels that have been
registered with the GLogger class (through the glogger singleton), as shown in listing 33.5.

Another manipulator, called GWARNING, will emit warnings instead of simple log messages. In
contrast to normal logging messages, they are equipped with time stamps and the location from
where the warning was triggered.

3Note that GEXCEPTION is indeed a macro which wraps the GManipulator class.
4On a side note, it should be possible to design further targets without too many problems, such as a network logging

target.

285

Chapter 33. Common Functionality and Classes The Geneva Library Collection

33.2.4. Instant logging to files, stdout and stderr

Unfortunately, std::cout is not thread-safe, so that output written to this stream from different
threads might be garbled. glogger can be used to output information to stdout and stderr,
using the two manipulators GSTDOUT and GSTDERR. Any log targets registered with the GLog-
ger class will be ignored in this case.

Likewise, it is possible to output data to specific files without registration of a corresponding log target.
This can be useful for debugging purposes, if the output of some part of a function should end up in a
file.

Listing 33.6 shows examples for all three cases. Note that the name of the file is given as an argument
to glogger here.

Listing 33.6: Adding log targets to the logger
1 / / [. . .]
2 / / Output to a s p e c i f i c f i l e
3 glogger (" f i l e . t x t ")
4 << "Some in fo rma t i on " << 3 << " " << 4 << std : : endl << GFILE ;
5
6 / / Output to s tdou t
7 glogger << " s td : : out−i n f o rma t i on " << std : : endl << GSTDOUT;
8
9 / / Output to s t d e r r

10 glogger << " s td : : e r r i n f o rma t i on " << std : : endl << GSTDERR;
11 / / [. . .]

33.3. Parsing Configuration Files

Geneva implements the GParserBuilder framework for parsing configuration files in JSON5

format. The idea behind choosing this format is to facilitate the creation of web interfaces for the
editing and creation of configuration files. The techniques have been used extensively throughout
the optimization framework. Every object adds its options to a GParserBuilder object, so that
changes to the class can be directly mapped to the configuration process. GParserBuilder
can both create and read configuration files. Its use is not limited to the optimization framework, as it
has no dependencies on it.

The Geneva distribution has a complete example (common/GConfigFileCreation) on
how to create and read configuration files. In this section we only want to present the principles.

Listing 33.7: Creating and parsing configuration files with GParserBuilder
1 / / [. . .]
2 const std : : s t r i n g f i leName = " . / con f i g / c o n f i g F i l e . json " ;
3
4 / / Create the parser b u i l d e r

5Java Script Object Notation

286

The Geneva Library Collection 33.3. Parsing Configuration Files

5 Gem: : Common : : GParserBui lder gpb ;
6
7 / /−−
8 / / We can d i r e c t l y set a v a r i a b l e by p rov id ing a re ference to i t .
9 i n t i = 0 ; const i n t IDEFAULT = 0;

10
11 gpb . reg i s te rF i l eParamete r < int >(
12 " iOp t ion "
13 , i
14 , IDEFAULT
15 , Gem: : Common : : VAR_IS_ESSENTIAL / / Could a lso be VAR_IS_SECONDARY
16 , " This i s a comment ; This i s the second l i n e o f the comment "
17) ;
18
19 / /−−
20 / / Reg is te r ing a c a l l−back f u n c t i o n (which i n t h i s
21 / / case sets a g l o b a l l y def ined i n t e g e r v a r i a b l e
22 gpb . reg i s te rF i l eParamete r < int >(
23 " iOpt ion2 "
24 , SOMEGLOBALINTDEFAULT
25 , s e t G l o b a l I n t
26 , Gem: : Common : : VAR_IS_SECONDARY / / Could a lso be VAR_IS_ESSENTIAL
27 , " This i s a comment f o r c a l l−back op t ion "
28) ;
29
30 / /−−
31 / / Adding a re ference to a vec to r o f con f i gu rab le type to the c o l l e c t i o n .
32
33 std : : vector <double> targetDoubleVector ; / / W i l l hold the read values
34 std : : vector <double> defaultDoubleVec5 ; / / The d e f a u l t values
35 defaultDoubleVec5 . push_back (0 .) ;
36 defaultDoubleVec5 . push_back (1 .) ;
37
38 gpb . reg i s te rF i l eParamete r <double >(
39 " vectorOpt ionsReference "
40 , targetDoubleVector
41 , defaultDoubleVec5
42 , Gem: : Common : : VAR_IS_ESSENTIAL / / Could a lso be VAR_IS_SECONDARY
43 , "And yet another comment "
44) ;
45
46 / /−−
47 / / [. . .]
48
49 / / Check the number o f r e g i s t e r e d opt ions
50 std : : cout << " Got " << gpb . numberOfOptions () << " op t ions . " << std : : endl ;
51
52 i f (c rea teCon f i gF i l e) {
53 std : : s t r i n g header = " This i s a not so compl icated header ; w i th a second l i n e " ;
54 bool w r i t e A l l = true ; / / I f se t to fa l se , on ly e s s e n t i a l are w r i t t e n out
55 gpb . w r i t e C o n f i g F i l e (f i leName , header , w r i t e A l l) ;

287

Chapter 33. Common Functionality and Classes The Geneva Library Collection

56 } else i f (readConf igF i le) {
57 gpb . parseConf igF i le (f i leName) ;
58 }
59
60 / / [. . .]

The entire process is relatively simple. After default-construction of a GParserBuilder object
you can add different kinds of configuration options using the registerFileParameter()
command. Different overloads exist. At the time of writing, GParserBuilder implements the
following possibilities:

• Registering a reference to a single configuration parameter

• Registering a call-back function which will be called with a single, parsed value

• Registering a call-back function which will be called with two related parameters (example:
lower and upper boundary of a random number generator)

• Registering a reference to a std::vector<>. This can be used if it is not yet clear how
many configuration options there will be

• Registering a call-back function that will be called with a std::vector of values.

• Registering a reference to a boost::array of fixed size. This can be used to simultane-
ously store and read multiple variables when there is a strict requirements for a fixed number of
values

• Registering a call-back function which will be called with a boost::array of fixed size,
when the configuration file has been parsed.

Once the options have been registered with their default values (or at least one default value in the
case of the std::vector<>), the call writeConfigFile(...) will create a configu-
ration file. The function accepts three parameters: The name and path of the configuration file, a
std::string holding a description for the file header, and a specification whether only “essen-
tial” variables should be written to file. If so, variables which are tagged VAR_IS_SECONDARY,
will not be written out.

As of version 1.4.1 of Geneva it is also possible to stream comments to the GParserBuild-
er::registerFileParameter() call. Examples are again shown in common/GCon-
figFileCreation. Listing 33.8 gives an example.

Listing 33.8: Comments may also be streamed to the registerFileParameter() call
1 gpb . reg i s te rF i l eParamete r < int >(
2 " iOp t ion "
3 , i
4 , IDEFAULT
5)
6 << " This i s a comment " << std : : endl
7 << This i s the second l i n e o f the comment " ;

Reading data from the configuration file is achieved by means of the readConfigFile() func-
tion, which only receives the file name as argument.

288

The Geneva Library Collection 33.3. Parsing Configuration Files

As a small caveat, if you register references to variables, you need to make sure that they are
valid for the entire lifetime of the GParserBuilder object. Thus it is recommended to use
GParserBuilder only inside of a single function and apply it to local variables, or to apply it to
member variables of a struct or class, of which the GParserBuilder object is a part.

Listing 33.9 shows an example of a configuration file that was created with this method. Only part of
the file is shown.

Listing 33.9: An example for a configuration file that was created with GParserBuilder
1 / /−−−
2 / / This i s a not so compl icated header
3 / / w i th a second l i n e
4 / / F i l e c r ea t i on date : 2011−Oct−02 17:48:45
5 / /−−−
6
7 {
8 " iOp t ion " :
9 {

10 "comment " : " This i s a comment " ,
11 "comment " : " This i s the second l i n e o f the comment " ,
12 " d e f a u l t " : " 0 " ,
13 " value " : " 0 "
14 } ,
15 " iOpt ion2 " :
16 {
17 "comment " : " This i s a comment f o r c a l l−back op t ion " ,
18 " d e f a u l t " : " 1 " ,
19 " value " : " 1 "
20 } ,
21 " combinedLabel " :
22 {
23 " iOpt ion3 " :
24 {
25 "comment " : "A comment concerning the f i r s t op t ion " ,
26 " d e f a u l t " : " 3 " ,
27 " value " : " 3 "
28 } ,
29 " dOption1 " :
30 {
31 "comment " : "A comment concerning the second op t ion " ,
32 "comment " : " w i th a second l i n e " ,
33 " d e f a u l t " : " 3 " ,
34 " value " : " 3 "
35 }
36 } ,
37
38 / / [. . .]
39 }

Note that, if you have specified a relative path for your configuration file, it is possible to specifiy an off-
set to your configuration file by setting the environment variable GENEVA_CONFIG_BASENAME.

289

Chapter 33. Common Functionality and Classes The Geneva Library Collection

Parsing, particularly of Geneva configuration files, can in this way become independent of the place
of execution of an executable wishing to parse a given file.

33.4. Creating Factories

Geneva uses factories in many areas. They are particularly useful for the creation of individuals, but
are likewise also being used for the creation of optimization algorithms. The Common library tries to
facilitate the creation of factory classes through the GFactoryT<> class template. It has been
designed particularly with the GParserBuilder class in mind.

Examples for the use of the GFactoryT<> class can be found throughout the Geneva distribution.
It is suggested to have a look at some of the sample individuals. We will give a short illustration of the
factory which was implemented for the GFunctionIndividual example. Listing 33.10 shows
the declaration of the GFunctionIndividualFactory class6.

Listing 33.10: Simplified declaration of the GFunctionIndividualFactory

1 class GFunc t ion Ind iv idua lFac to ry
2 : public Gem: : Common : : GFactoryT<GParameterSet>
3 {
4 public :
5 GFunc t ion Ind iv idua lFac to ry (const std : : s t r i n g& c o n f i g F i l e) ;
6 v i r t u a l ~GFunc t ion Ind iv idua lFac to ry () ;
7
8 protected :
9 v i r t u a l boost : : shared_ptr <GParameterSet>

10 getObject_ (Gem: : Common : : GParserBui lder& gpb , const std : : s i z e _ t& i d) ;
11 v i r t u a l void descr ibeLocalOpt ions_ (Gem: : Common : : GParserBui lder& gpb) ;
12 v i r t u a l void postProcess_ (boost : : shared_ptr <GParameterSet>& p) ;
13
14 private :
15 / / The d e f a u l t cons t r uc to r . I n t e n t i o n a l l y p r i v a t e and undef ined
16 GFunc t ion Ind iv idua lFac to ry () ;
17
18 Gem: : Common : : GOneTimeRefParameterT<double> adProb_ ;
19 Gem: : Common : : GOneTimeRefParameterT<boost : : u in t32_ t > adapt ionThreshold_ ;
20 / / Fur ther v a r i a b l e s are not shown
21 } ;

The factory is derived from the Gem::Common::GFactoryT<T> class, whose template pa-
rameter is set to GParameterSet – items produced by the factory will have this type. The default
constructor is disabled. The only available constructor accepts the name of the configuration file.

It will typically initialize a set of local variables to default values. These variables really represent
configuration options of the objects this factory is supposed to create. The constructor will of course
also store the name of the configuration file locally.

6Note that we have left out quite a few non-essential functions for reasons of readability.

290

The Geneva Library Collection 33.5. Singletons

The factory now needs to overload three functions of the base class:

• getObject_(...) is given a reference to a GParserBuilder object (compare
section 33.3) and an id. The id is incremented by the base class upon each call to getO-
bject_(). It allows the factory function to perform special actions for specific ids. For
example, the first call might want to create different objects than all consecutive calls. getO-
bject_(...) will typically ony default-construct the desired object and return it inside of
a smart pointer (boost::shared_pointer<>). However, the object to be constructed
may choose to add own configuration options to the parser builder. This is used extensively in
Geneva’s optimization framework.

• describeLocalOptions_(Gem::Common::GParserBuilder&) is the lo-
cation where configuration options local to the factory class will be registered with theGParser-
Builder object. Typically these are options that will be used later to configure the object to
be created by the factory. The parsed values will be stored locally in the factory class.

• postProcess_(boost::shared_ptr<GFunctionIndividual>&) is where
the stored options from the last step are used to further configure the target object.

The user can now instantiate the factory class. As it implements an operator(), creating new
objects is very much like a function call, albeit much more versatile.

Note, though, that the items returned have the typeboost::shared_ptr<GParameterSet>,
i.e. they point to the base class of the actual object produced. You can extract the target type itself
using the get<GFunctionIndividual>() function of GFactoryT<>.

33.5. Singletons

Singletons are global objects that live outside of the main() function. They can be used to gain ac-
cess to functionality relevant to all entities of a program. Only a single object is ever produced, so that
all users of this object share the same data. Geneva uses Singletons in many places, of which the bro-
ker architecture (compare chapter 32) and the random number factory (see chapter 31) are important
examples. Geneva’s singleton implementation is special in that it emitsboost::shared_ptr<>
smart pointers. The reason behind this is that in C++03, the order of destruction of singletons is not
defined. Thus, if one singleton uses services of another, the program might stall. If it can however
store a reference-counted smart pointer such as boost::shared_ptr<>, the object will only
go out of scope when the last smart pointer is erased. Geneva’s factory GSingletonT is imple-
mented as a template, so that it can host practically any type of object. If this object is not meant to
be default-constructed, you may overload the TFactory_GSingletonT<> function template
for your use case. GSingletonT will call this function for the first creation of the object.

291

Chapter 33. Common Functionality and Classes The Geneva Library Collection

33.6. Global Options

The GGlobalOptionsT<> template is an experimental feature meant to facilitate access to
global options. It is based on the Singleton described in section 33.5. As one example, the Mona Lisa
example described in section 9.1 uses this class to store a picture of the Mona Lisa, so it doesn’t need
to get loaded from disk upon every iteration of the optimization process.

33.7. A Thread Group

The GThreadGroup class implements a simple group of boost::thread objects that can
be simultaneously created and stopped. It is based on the Boost.ThreadGroup class, but has
been augmented with additional features.

33.8. A Thread Pool

The Geneva library collection contains a simple thread pool implementation (called GThread-
Pool), based on Boost.ASIO. A thread pool receives work items from a pool. A user-defined number
of threads process these work items. When a thread finishes with one work item, it obtains the next
item from the queue or waits idle, until the queue is filled with work items again.

Listing 33.11 shows the public interface functions of this class. Note that this class might go away after
a generalized Boost thread pool has become available.

Listing 33.11: Public interface functions of the GThreadPool class
1 class GThreadPool : private boost : : noncopyable / / prevent copying o f pool
2 {
3 public :
4 GThreadPool () ;
5 GThreadPool (const std : : s i z e _ t &) ; / / I n i t i a l i z a t i o n wi th number o f threads
6 ~GThreadPool () ;
7
8 void setNThreads (s td : : s i z e _ t) ;
9 s td : : s i z e _ t getNThreads () const ;

10
11 bool wai t () ; / / Block u n t i l a l l jobs have f i n i s h e d
12
13 bool hasErrors () const ; / / Check whether e r r o r s have occurred
14 void ge tEr ro rs (s td : : vector <s td : : s t r i n g >&); / / Ex t rac t e r r o r s
15 void c l e a r E r r o r s () ; / / Clear e r r o r logs
16
17 / / Submits the task to Boost . ASIO ’ s i o_se rv i ce .
18 / / This f u n c t i o n w i l l r e t u r n immediate ly .
19 template <typename F> void async_schedule (F f) { / * code not shown * / }
20
21 private :

292

The Geneva Library Collection 33.9. The Plot Designer

22 / / P r i va te f u n c t i o n s not shown
23 } ;

33.9. The Plot Designer

In the course of performing optimizations, you will often come across the need to graphically represent
some of the data coming out of the program. Be it that you need to visualize the progress of the
optimization or that you want to plot one or more parameters of your individuals, in one- or two-
dimensional plots.

Geneva already uses the services of the ROOT analysis framework (compare appendix C) in many
places. ROOT uses C++ as a scripting language. Plots are thus described using C++ classes and
functions. However, ROOT can have quite a steep learning curve, and letting your optimization pro-
grams automatically create ROOT scripts can be a bit challenging. For this reason we have included
a facility in the Geneva library collection that let you create these scripts with relative ease. By the
same token, the library can be easily extended to fit your particular design needs. Geneva contains
a demo with the name GPlotDesignerTest that shows the usage of this facility. Figure 33.1
shows a plot created with this demo. Listing 33.12 shows the code that was used to create this plot.

The logic of creating plots with this facility is straight forward. A plot, referenced through the GPlot-
Designer class, may contain sub-canvases. The layout is specified by providing the constructor
with the number of sub-canvases in x- and y-direction. The user then creates canvas objects, such as
GGraph2D (a two-dimensional plot, in our example using the SCATTER mode), GFunction-
Plotter1D or GFunctionPlotter2D. Many other canvas objects are available (compare
the reference documentation). Each canvas resides in a boost::shared_ptr. Once it has
been filled with data, it is registered with the GPlotDesigner object, which can then be instructed
to write the resulting ROOT script to disc, where its contents can then be visualized offline.

Listing 33.12: The code of the GPlotDesigner example
1 using namespace Gem: : Common;
2
3 i n t main (i n t argc , char ** argv) {
4 boost : : tup le <double , double> minMaxX(−M_PI , M_PI) ;
5 boost : : tup le <double , double> minMaxY(−M_PI , M_PI) ;
6
7 boost : : shared_ptr <GGraph2D> gs in_p t r (new GGraph2D ()) ;
8 gs in_p t r−>setPlotMode (Gem: : Common : : SCATTER) ;
9 gs in_p t r−>se tP lo tLabe l ("A s ine func t i on , p l o t t e d through TGraph ") ;

10 gs in_p t r−>setXAxisLabel (" x ") ;
11 gs in_p t r−>setYAxisLabel (" s in (x) ") ;
12
13 boost : : shared_ptr <GGraph2D> gcos_ptr (new GGraph2D ()) ;
14 gcos_ptr−>setPlotMode (Gem: : Common : : SCATTER) ;
15 gcos_ptr−>se tP lo tLabe l ("A cosine func t i on , p l o t t e d through TGraph ") ;
16 gcos_ptr−>setXAxisLabel (" x ") ;

293

Chapter 33. Common Functionality and Classes The Geneva Library Collection

17 gcos_ptr−>setYAxisLabel (" cos (x) ") ;
18
19 for (s td : : s i z e _ t i =0; i <1000; i ++) {
20 double x = 2*M_PI*double (i) / 1000 . − M_PI ;
21
22 (* gs in_p t r) & boost : : tup le <double , double >(x , s in (x)) ;
23 (* gcos_ptr) & boost : : tup le <double , double >(x , cos (x)) ;
24 }
25
26 boost : : shared_ptr <GFunct ionPlot ter1D >
27 gs in_p lo t t e r_1D_p t r (new GFunct ionPlot ter1D (" s in (x) " , minMaxX)) ;
28 gs in_p lo t te r_1D_p t r−>se tP lo tLabe l ("A s ine func t i on , p l o t t e d through TF1") ;
29 gs in_p lo t te r_1D_p t r−>setXAxisLabel (" x ") ;
30 gs in_p lo t te r_1D_p t r−>setYAxisLabel (" s in (x) ") ;
31
32 boost : : shared_ptr <GFunct ionPlot ter1D >
33 gcos_p lo t te r_1D_pt r (new GFunct ionPlot ter1D (" cos (x) " , minMaxX)) ;
34 gcos_plo t ter_1D_pt r−>se tP lo tLabe l ("A cosine func t i on , p l o t t e d through TF1") ;
35 gcos_plo t ter_1D_pt r−>setXAxisLabel (" x ") ;
36 gcos_plo t ter_1D_pt r−>setYAxisLabel (" cos (x) ") ;
37
38 boost : : shared_ptr <GFunct ionPlot ter2D >
39 schwefe l_p lo t te r_2D_pt r (new GFunct ionPlot ter2D (" −0.5*(x* s in (s q r t (abs (x)))
40 + y* s in (s q r t (abs (y)))) " , minMaxX , minMaxY)) ;
41 schwefe l_p lo t te r_2D_pt r−>se tP lo tLabe l (" The Schwefel f u n c t i o n ") ;
42 schwefe l_p lo t te r_2D_pt r−>setXAxisLabel (" x ") ;
43 schwefe l_p lo t te r_2D_pt r−>setYAxisLabel (" y ") ;
44 schwefe l_p lo t te r_2D_pt r−>setYAxisLabel (" Schwefel f u n c t i o n ") ;
45 schwefe l_p lo t te r_2D_pt r−>setDrawingArguments (" su r f1 ") ;
46
47 boost : : shared_ptr <GFunct ionPlot ter2D >
48 no isyParabo la_p lo t te r_2D_pt r (new GFunct ionPlot ter2D (" (cos (x^2+y ^2) +
49 2) * (x^2+y ^2) " , minMaxX , minMaxY)) ;
50
51 no isyParabo la_p lo t te r_2D_pt r−>se tP lo tLabe l (" The noisy parabola ") ;
52 no isyParabo la_p lo t te r_2D_pt r−>setXAxisLabel (" x ") ;
53 no isyParabo la_p lo t te r_2D_pt r−>setYAxisLabel (" y ") ;
54 no isyParabo la_p lo t te r_2D_pt r−>setYAxisLabel (" Noisy parabola ") ;
55 no isyParabo la_p lo t te r_2D_pt r−>setDrawingArguments (" su r f1 ") ;
56
57 GPlotDesigner gpd (" Sine and cosine and 2D−f u n c t i o n " , 2 , 3) ;
58
59 gpd . setCanvasDimensions (1200 ,1400) ;
60 gpd . r e g i s t e r P l o t t e r (gs i n_p t r) ;
61 gpd . r e g i s t e r P l o t t e r (gcos_ptr) ;
62 gpd . r e g i s t e r P l o t t e r (gs in_p lo t t e r_1D_p t r) ;
63 gpd . r e g i s t e r P l o t t e r (gcos_p lo t te r_1D_pt r) ;
64 gpd . r e g i s t e r P l o t t e r (schwefe l_p lo t te r_2D_pt r) ;
65 gpd . r e g i s t e r P l o t t e r (no isyParabo la_p lo t te r_2D_pt r) ;
66
67 gpd . w r i t e T o F i l e (" r e s u l t .C") ;

294

The Geneva Library Collection 33.10. Parsing Formulas

68 }

33.10. Parsing Formulas

In the context of the handling of inter-parameter constraints (compare chapter 16), the Gemfony
team has integrated the possibility to parse and evaluate simple C++ -style forumulas into Geneva,
using the GFormulaParserT<fp_type> class template. The class accepts formulas of
the type sqr t (s i n (p i)∗cos (3.)/5.), but can also handle variables. Formulas then have the form
sqr t (s i n ({{x }})∗cos ({{y }})/5.), where {{x }} and {{y }} indicate variable names.

Listing 33.13: Parsing and evaluating a simple formula with variables
1 std : : s t r i n g formula (" s in ({ { x } }) / { { y } } ") ;
2
3 s td : : map<std : : s t r i n g , s td : : vector <double> > parameterValues ;
4 s td : : vector <double> l i s t 0 = boost : : assign : : l i s t _ o f (4.34343434343434);
5 s td : : vector <double> l i s t 1 = boost : : assign : : l i s t _ o f (8.98989898989899);
6 parameterValues [" x "] = l i s t 0 ;
7 parameterValues [" y "] = l i s t 1 ;
8
9 GFormulaParserT<double> f (formula) ;

10 double parse_val = f (parameterValues) ;

Listing 33.13 shows an example of the usage of this parser together with variables. In a first step, a
simple formula with place holders is specified as a std::string. Note that this formula might
also be taken from an external source, such as the command line or a configuration file.

Next, a std::map is filled with parameter names and values. Note that the values are themselves
stored in a std::vector<double>, so for the sake of simplicity we use a Boost function to
create the vector and fill it in the same step.

Finally we create the parser, giving it the formula as argument, and pass the value map to the resulting
object for evaluation7. Note that the evaluation step currently happens as a textual replacement of the
place holders with parameter values before parsing, so performance may not be high.

The reason for using std::vector<double> as the second map-parameter may become
apparent in listing 33.14.

Listing 33.14: Parsing and evaluating a simple formula with variables
1 std : : s t r i n g formula (" s in ({ { x [2] } }) / { { y } } ") ;
2
3 s td : : map<std : : s t r i n g , s td : : vector <double> > parameterValues ;
4 s td : : vector <double> l i s t 0 = boost : : assign : : l i s t _ o f (1 . 5) (2 . 5) (3 . 5) ;
5 s td : : vector <double> l i s t 1 = boost : : assign : : l i s t _ o f (8.98989898989899);
6

7The parser constructor may also accept a map of text patterns and values to allow the usage of user-defined constants,
which is not shown here.

295

Chapter 33. Common Functionality and Classes The Geneva Library Collection

7 parameterValues [" x "] = l i s t 0 ;
8 parameterValues [" y "] = l i s t 1 ;
9

10 GFormulaParserT<double> f (formula) ;
11 double parse_val = f (parameterValues) ;

With GFormularParserT it is not only possible to pass parameter names such as {{x }} and
{{y }}, but also a kind of vector notation, such as {{x [2]}}, referring to the third value in the associated
vector.

The use case is of course Geneva-related: Geneva comes both with individual parameter types,
such as GConstrainedDoubleObject, and with parameter collections such as GCon-
strainedDoubleCollection. Such objects may be assigned a name. We can then extract
their values (there may be more than one for some parameter types) and pass their name and value
to the formula parser.

GFormulaParserT is only capable of dealing with floating point parameters at the moment, but
does support most common C++ math functions. Common math errors, such as division by 0, will
result in an exception being thrown.

So far, the following exceptions are implemented:

• division_by_0 with an obvious meaning

• acos_invalid_range<fp_type> andasin_invalid_range<fp_type>
to flag arguments outside of the range [−1 : 1]

• log_negative_value<fp_type> andlog10_negative_value<fp_type>
to indicate function arguments ≤0

• sqrt_negative_value<fp_type> to flag function arguments <0

fp_type will be either double or float, depending on which parameter type you have chosen
for GFormulaParserT.

All of these exceptions derive from math_logic_error, so you can just catch this exception
type (or alterative the parent class gemfony_error_condition).

Further information on theGFormularParserT class is available in theGFormulaParserTest
code in the Geneva distribution.

296

The Geneva Library Collection 33.10. Parsing Formulas

Figure 33.1.: A sample plot created with Geneva’s GPlotDesigner class, as demonstrated in
the GPlotDesignerTest example delivered with the Geneva library.

297

Part V.

Appendix and Bibliography

299

Appendix A.

Frequently Used Test Functions

This appendix introduces a number of test functions that are typically used to test the ability of opti-
mization algorithms to find the global optimum. These functions have been implemented as part of
the GFunctionIndividual, as introduced in chapter 26.

A.1. Parabola

An n-dimensional parabola is arguably the easiest useful test function, as it only has a single optimum.
Thus optimization algorithms cannot get stuck in local optima. It is possible, however, to use this test
function in order to measure, how well a given algorithm can pinpoint the exact location of the optimum.
An n-dimensional parabola can be defined by equation A.1.

f n (x1,x2,...,xn)=
n∑

i=1

x 2
i =x 2

1+x 2
2+ ...+x 2

n (A.1)

A 2-D version of this function is visualized in figure A.1.

A.2. Berlich Noisy Parabola

The “noisy” parabola was invented as a test function for the Geneva library. Its general shape is that
of a parabola, albeit with a large amount of concentric local optima around the global optimum, whose
frequency and amplitude increases with increasing distance from 0. It is defined by equation A.2.

f n (x1,x2,...,xn)=

cos

n∑

i=1

x 2
i

!
+2

!
∗

n∑
i=1

x 2
i (A.2)

Figure A.2 visualizes this function in two dimensions.

301

Appendix A. Frequently Used Test Functions The Geneva Library Collection

A.3. Rosenbrock Function

The Rosenbrock function is particularly interesting, as it has un un-obvious global optimum at (0.0) in
an otherwise flat region. It is defined in two dimensions as

f 2
�
x ,y

�
=(1−x)2+100

�
y −x 2

�2
(A.3)

and in n dimensions (where n must be an even number) as

f n (x1,x2,...,xn)=
n/2∑
i=1

�
(1−x2i−1)2+100

�
x2i −x 2

2i−1

�2
�

(A.4)

Figure A.3 visualizes this function in two dimensions.

A.4. Ackley Function

The Ackley function features a huge number of local optima. In two dimensions, it also has two global
optima. It is defined by:

f n (x1,x2,...,xn)=
n−1∑
i=1

�
e−0.2

p
x i

2+x i+1
2+3 (cos(2x i)+sin(2x i+1))

�
(A.5)

Figure A.4 visualizes this function in two dimensions.

A.5. Rastrigin Function

The Rastrigin function resembles the noisy parabola (compare figure A.2) in that local optima are
overlaid to a parabola, and thar the global optimum can be found in (0,0) in two dimensions. It is
defined by equation A.6.

f n (x1,x2,...,xn)=10n+
n∑

i=1

�
x i

2−10 cos(2πx i)
�

(A.6)

Figure A.5 visualizes this function in two dimensions.

A.6. Schwefel Function

The Schwefel function has a global optimum at (420.969,420.969) in two dimensions, when being
restricted to (−512,512). The function is defined by equation A.7.

302

The Geneva Library Collection A.7. Salomon Function

Figure A.1.: Two views of a two-dimensional paraboloid. Left: contour lines; right: three-dimensional
view with function values.

f n (x1,x2,...,xn)=− 1

n

n∑
i=1

�
x i s i n

�p|x i |
��

(A.7)

Figure A.6 visualizes this function in two dimensions.

A.7. Salomon Function

The Salomon function again resembles the noisy parabola (compare figure A.2), albeit with fewer local
optima. The global optimum in two dimensions can be found in the center of the coordinate system,
at (0,0). The function is defined by equation A.8.

f n (x1,x2,...,xn)=1+0.1

s
n∑

i=1

x 2
i −cos

2π

s
n∑

i=1

x 2
i

 (A.8)

303

Appendix A. Frequently Used Test Functions The Geneva Library Collection

Figure A.2.: Two views of the “noisy” parabola in two dimensions. Left: contour lines; right: three-
dimensional view with function values. Note that, due to the very high number of local
optima, the plot program is unable to entirely represent this function, even in the chosen
small value range.

Figure A.3.: The Rosenbrock function is particularly interesting, as it has a less obvious global opti-
mum at (0.0) in an otherwise flat region.

304

The Geneva Library Collection A.7. Salomon Function

Figure A.4.: The Ackley function features a huge number of local optima. In two dimensions, it also
has two global optima.

Figure A.5.: The Rastrigin function resembles the noisy parabola (compare figure A.2) in that local
optima are overlaid to a parabola, and that the global optimum can be found in (0,0) in
two dimensions.

305

Appendix A. Frequently Used Test Functions The Geneva Library Collection

Figure A.6.: The Schwefel function has a global optimum at (420.969,420.969) in two dimensions.

Figure A.7.: The Schwefel function has a global optimum at (0.0), local optima form concentric rings
around the center. The function resembles the “noisy parabola” in figure A.2.

306

The Geneva Library Collection A.7. Salomon Function

Figure A.7 visualizes this function in two dimensions.

307

Appendix B.

The Boost Library Collection

Boost[72] is a volunteer effort of many of the brightest minds of the C++ ecosystem. A large number
of Boost libraries has even been submitted to and accepted into the new C++11 standard. Boost
libraries are peer-reviewed and undergo thorough, automated testing in nightly builds. New versions
are released roughly every three months. This appendix does not want to replicate existing books and
tutorials. See e.g. http://en.highscore.de/cpp/boost/ for an excellent online in-
troduction. Instead, we only want to shortly introduce a number of components of particular relevance
to Geneva here. Further information will be added to this chapter over time, as the Geneva manual
evolves and grows.

B.1. Smart Pointers

The new C++11 standard defines a std::shared_ptr<>, which allows access to objects very
similar to standard pointers. However, using the RAII technique and reference counting, “pointed-to”
objects get automatically out of scope as soon as the last std::shared_ptr<> gets out of
scope and is reclaimed by the run-time environment. This technique thus has a similar effect for
the user as a garbage collector, making it unnecessary to explicitly delete dynamically allocated
objects. This is particularly useful with factory classes, or when “shipping” objects via Geneva’s broker
to remote locations.

std::shared_ptr<> has been modelled after the correspondingboost::shared_ptr<>,
so that the technique is also available with “old” C++03 compilers. boost::shared_ptr<> ob-
jects are used throughout Geneva, wherever user-supplied objects need to be registered or added to
other objects.

B.2. Serialization

Serialization of objects is not typically the domain of C++ – you’d rather find this feature with its
stepbrothers and sisters C# and Java. However, Boost contains the Boost.Serialization library. The
Geneva library collection makes heavy use of this library, particularly when running in networked mode,
but also for check-pointing. Within Boost.Serialization, code for most standard constructs is readily

309

http://en.highscore.de/cpp/boost/

Appendix B. The Boost Library Collection The Geneva Library Collection

available, so they can be serialized with virtually no effort.

User-defined classes can be serialized essentially by listing all variables and objects to be serialized
inside of a private serialize() function. Objects to be serialized as part of the surrounding class
also need to follow this convention. Geneva’s optimization-related classes are all pre-configured so
they can be subject to serialization. User-defined classes, such as individuals, can thus concentrate
on their own, local data. Geneva handles the rest.

B.3. Threads

Boost has made available a thread implementation that allows to create concurrent programs across
amyn different platforms. The new std::thread implementation of C++11 has also been crafted
after Boost.Thread. Geneva uses this facility wherever threads are used, so that Geneva programs
are as portable as possible.

310

Appendix C.

The ROOT Analysis Framework

ROOT stands for ROOT Object Oriented Toolkit – i.e. it is a recursive acronym in the style of GNU
(GNU is Not Unix).

ROOT is a comprehensive, C++ interpreter -based framework which is primarily used in particle
physics. It is the standard tool for performing analysis at the CERN Large Hadron Collider experi-
ments.

ROOT comprises histogramming and visualization, statistics, matrix algebra and many other compo-
nents used in mathematics and physics, as well as distributed computing.

Geneva uses ROOT in many places to output results, e.g. in the context of optimization monitors.
Listing C.1 shows a simple root script that was automatically generated by Geneva.

Listing C.1: A simple root script that was automatically created by a Geneva optimization monitor
1 {
2 gROOT−>Reset () ;
3 gStyle−>Se tOp tT i t l e (0) ;
4 TCanvas *cc = new TCanvas (" cc " , " cc " ,0 ,0 ,1024 ,768) ;
5
6 std : : vector <long> i t e r a t i o n ;
7 s td : : vector <double> sigma ;
8
9 / / F i l l w i th r e s u l t s

10 i t e r a t i o n . push_back (0) ;
11 sigma . push_back (2) ;
12 i t e r a t i o n . push_back (1) ;
13 sigma . push_back (1 .07169) ;
14
15 / / [. . .]
16
17 i t e r a t i o n . push_back (9 9 8) ;
18 sigma . push_back (0.000728762);
19 i t e r a t i o n . push_back (9 9 9) ;
20 sigma . push_back (0.000728762);
21
22 / / T rans fer the r e s u l t s i n t o a TGraph ob jec t
23 double i t e r a t i o n _ a r r [i t e r a t i o n . s ize ()] ;
24 double sigma_arr [sigma . s ize ()] ;

311

Appendix C. The ROOT Analysis Framework The Geneva Library Collection

Figure C.1.: A picture that was created with the help of an automatically generated ROOT script

25
26 for (s td : : s i z e _ t i =0; i < i t e r a t i o n . s ize () ; i ++) {
27 i t e r a t i o n _ a r r [i] = (double) i t e r a t i o n [i] ; s igma_arr [i] = sigma [i] ;
28 }
29
30 / / Create a TGraph ob jec t
31 TGraph *sGraph = new TGraph (sigma . s ize () , i t e r a t i o n _ a r r , s igma_arr) ;
32
33 / / Set the ax is t i t l e s
34 sGraph−>GetXaxis ()−> S e t T i t l e (" I t e r a t i o n ") ;
35 sGraph−>GetYaxis ()−> S e t T i t l e O f f s e t (1 . 1) ;
36 sGraph−>GetYaxis ()−> S e t T i t l e (" Average Sigma ") ;
37
38 / / Set the l i n e co l o r to red sGraph−>SetL ineColor (2) ;
39
40 / / Set the y−ax is to a l o g a r i t h m i c scale
41 cc−>SetLogy () ;
42 / / Do the ac tua l drawing
43 sGraph−>Draw ("ALP") ;

312

The Geneva Library Collection

44 }

Figure C.1 shows an example of a picture that was created using the above script (although with
different input values).

313

Appendix D.

Important Open Source Licenses

This appendix lists a number of important Open Source licenses that are used in the Geneva library
collection.

D.1. The GNU Affero General Public License

Most of Geneva is covered by the Affero GPL v3. We encourage you to read this license in its entirety
in order to understand your obligations. At the time of writing, the entire license is available from
http://www.gnu.org/licenses/agpl-3.0.html. It is quoted verbatim below.

Preamble

The GNU Affero General Public License is a free, copyleft license for software
and other kinds of works, specifically designed to ensure cooperation with the
community in the case of network server software.

The licenses for most software and other practical works are designed to take
away your freedom to share and change the works. By contrast, our General Public
Licenses are intended to guarantee your freedom to share and change all versions
of a program--to make sure it remains free software for all its users.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs, and that you know you can do
these things.

Developers that use our General Public Licenses protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this License
which gives you legal permission to copy, distribute and/or modify the software.

A secondary benefit of defending all users’ freedom is that improvements made in
alternate versions of the program, if they receive widespread use, become
available for other developers to incorporate. Many developers of free software
are heartened and encouraged by the resulting cooperation. However, in the case

315

Appendix D. Important Open Source Licenses The Geneva Library Collection

of software used on network servers, this result may fail to come about. The GNU
General Public License permits making a modified version and letting the public
access it on a server without ever releasing its source code to the public.

The GNU Affero General Public License is designed specifically to ensure that,
in such cases, the modified source code becomes available to the community. It
requires the operator of a network server to provide the source code of the
modified version running there to the users of that server. Therefore, public
use of a modified version, on a publicly accessible server, gives the public
access to the source code of the modified version.

An older license, called the Affero General Public License and published by
Affero, was designed to accomplish similar goals. This is a different license,
not a version of the Affero GPL, but Affero has released a new version of the
Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS
0. Definitions.

"This License" refers to version 3 of the GNU Affero General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works,
such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License. Each
licensee is addressed as "you". "Licensees" and "recipients" may be individuals
or organizations.

To "modify" a work means to copy from or adapt all or part of the work in a
fashion requiring copyright permission, other than the making of an exact copy.
The resulting work is called a "modified version" of the earlier work or a work
"based on" the earlier work.

A "covered work" means either the unmodified Program or a work based on the
Program.

To "propagate" a work means to do anything with it that, without permission,
would make you directly or secondarily liable for infringement under applicable
copyright law, except executing it on a computer or modifying a private copy.
Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other parties to
make or receive copies. Mere interaction with a user through a computer network,
with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent
that it includes a convenient and prominently visible feature that (1) displays

316

The Geneva Library Collection D.1. The GNU Affero General Public License

an appropriate copyright notice, and (2) tells the user that there is no
warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this
License. If the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work for making
modifications to it. "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard
defined by a recognized standards body, or, in the case of interfaces specified
for a particular programming language, one that is widely used among developers
working in that language.

The "System Libraries" of an executable work include anything, other than the
work as a whole, that (a) is included in the normal form of packaging a Major
Component, but which is not part of that Major Component, and (b) serves only to
enable use of the work with that Major Component, or to implement a Standard
Interface for which an implementation is available to the public in source code
form. A "Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if any) on
which the executable work runs, or a compiler used to produce the work, or an
object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source
code needed to generate, install, and (for an executable work) run the object
code and to modify the work, including scripts to control those activities.
However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in
performing those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated with source
files for the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require, such as by
intimate data communication or control flow between those subprograms and other
parts of the work.

The Corresponding Source need not include anything that users can regenerate
automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on
the Program, and are irrevocable provided the stated conditions are met. This
License explicitly affirms your unlimited permission to run the unmodified
Program. The output from running a covered work is covered by this License only
if the output, given its content, constitutes a covered work. This License
acknowledges your rights of fair use or other equivalent, as provided by

317

Appendix D. Important Open Source Licenses The Geneva Library Collection

copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey
covered works to others for the sole purpose of having them make modifications
exclusively for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in conveying all
material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your
direction and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright
treaty adopted on 20 December 1996, or similar laws prohibiting or restricting
circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention is
effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the work’s users, your or third parties’
legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice; keep intact all notices stating that this
License and any non-permissive terms added in accord with section 7 apply to the
code; keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may
offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it
from the Program, in the form of source code under the terms of section 4,
provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and
giving a relevant date.

318

The Geneva Library Collection D.1. The GNU Affero General Public License

b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies the
requirement in section 4 to "keep intact all notices".

c) You must license the entire work, as a whole, under this License to anyone
who comes into possession of a copy. This License will therefore apply, along
with any applicable section 7 additional terms, to the whole of the work, and
all its parts, regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not invalidate
such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate
Legal Notices; however, if the Program has interactive interfaces that do not
display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not
combined with it such as to form a larger program, in or on a volume of a
storage or distribution medium, is called an "aggregate" if the compilation and
its resulting copyright are not used to limit the access or legal rights of the
compilation’s users beyond what the individual works permit. Inclusion of a
covered work in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4
and 5, provided that you also convey the machine-readable Corresponding Source
under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by the Corresponding Source fixed on
a durable physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at
least three years and valid for as long as you offer spare parts or customer
support for that product model, to give anyone who possesses the object code
either (1) a copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your
reasonable cost of physically performing this conveying of source, or (2)
access to copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source. This alternative is allowed only
occasionally and noncommercially, and only if you received the object code
with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis
or for a charge), and offer equivalent access to the Corresponding Source in

319

Appendix D. Important Open Source Licenses The Geneva Library Collection

the same way through the same place at no further charge. You need not require
recipients to copy the Corresponding Source along with the object code. If the
place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions next to
the object code saying where to find the Corresponding Source. Regardless of
what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are
being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying the
object code work.

A "User Product" is either (1) a "consumer product", which means any tangible
personal property which is normally used for personal, family, or household
purposes, or (2) anything designed or sold for incorporation into a dwelling. In
determining whether a product is a consumer product, doubtful cases shall be
resolved in favor of coverage. For a particular product received by a particular
user, "normally used" refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way in which
the particular user actually uses, or expects or is expected to use, the
product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses
represent the only significant mode of use of the product.

"Installation Information" for a User Product means any methods, procedures,
authorization keys, or other information required to install and execute
modified versions of a covered work in that User Product from a modified version
of its Corresponding Source. The information must suffice to ensure that the
continued functioning of the modified object code is in no case prevented or
interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as part of a
transaction in which the right of possession and use of the User Product is
transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the
work has been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates for a
work that has been modified or installed by the recipient, or for the User
Product in which it has been modified or installed. Access to a network may be
denied when the modification itself materially and adversely affects the

320

The Geneva Library Collection D.1. The GNU Affero General Public License

operation of the network or violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation Information provided, in accord
with this section must be in a format that is publicly documented (and with an
implementation available to the public in source code form), and must require no
special password or key for unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this License by
making exceptions from one or more of its conditions. Additional permissions
that are applicable to the entire Program shall be treated as though they were
included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may
be used separately under those permissions, but the entire Program remains
governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional
permissions may be written to require their own removal in certain cases when
you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright
permission.

Notwithstanding any other provision of this License, for material you add to a
covered work, you may (if authorized by the copyright holders of that material)
supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of
sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices displayed by
works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring
that modified versions of such material be marked in reasonable ways as
different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of
the material; or

e) Declining to grant rights under trademark law for use of some trade names,
trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by
anyone who conveys the material (or modified versions of it) with contractual
assumptions of liability to the recipient, for any liability that these
contractual assumptions directly impose on those licensors and authors.

321

Appendix D. Important Open Source Licenses The Geneva Library Collection

All other non-permissive additional terms are considered "further restrictions"
within the meaning of section 10. If the Program as you received it, or any part
of it, contains a notice stating that it is governed by this License along with
a term that is a further restriction, you may remove that term. If a license
document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place,
in the relevant source files, a statement of the additional terms that apply to
those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a
separately written license, or stated as exceptions; the above requirements
apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt otherwise to propagate or modify it is void, and
will automatically terminate your rights under this License (including any
patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, you do not qualify
to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of
the Program. Ancillary propagation of a covered work occurring solely as a
consequence of using peer-to-peer transmission to receive a copy likewise does
not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe
copyright if you do not accept this License. Therefore, by modifying or
propagating a covered work, you indicate your acceptance of this License to do
so.

322

The Geneva Library Collection D.1. The GNU Affero General Public License

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a
license from the original licensors, to run, modify and propagate that work,
subject to this License. You are not responsible for enforcing compliance by
third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy
of the work also receives whatever licenses to the work the party’s predecessor
in interest had or could give under the previous paragraph, plus a right to
possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose a
license fee, royalty, or other charge for exercise of rights granted under this
License, and you may not initiate litigation (including a cross-claim or
counterclaim in a lawsuit) alleging that any patent claim is infringed by
making, using, selling, offering for sale, or importing the Program or any
portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this License of
the Program or a work on which the Program is based. The work thus licensed is
called the contributor’s "contributor version".

A contributor’s "essential patent claims" are all patent claims owned or
controlled by the contributor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permitted by this License, of making,
using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor
version. For purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent
license under the contributor’s essential patent claims, to make, use, sell,
offer for sale, import and otherwise run, modify and propagate the contents of
its contributor version.

In the following three paragraphs, a "patent license" is any express agreement
or commitment, however denominated, not to enforce a patent (such as an express
permission to practice a patent or covenant not to sue for patent infringement).
To "grant" such a patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the

323

Appendix D. Important Open Source Licenses The Geneva Library Collection

Corresponding Source of the work is not available for anyone to copy, free of
charge and under the terms of this License, through a publicly available network
server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of
the benefit of the patent license for this particular work, or (3) arrange, in a
manner consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have actual
knowledge that, but for the patent license, your conveying the covered work in a
country, or your recipient’s use of the covered work in a country, would
infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you
convey, or propagate by procuring conveyance of, a covered work, and grant a
patent license to some of the parties receiving the covered work authorizing
them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of
the covered work and works based on it.

A patent license is "discriminatory" if it does not include within the scope of
its coverage, prohibits the exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you
make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with
specific products or compilations that contain the covered work, unless you
entered into that arrangement, or that patent license was granted, prior to 28
March 2007.

Nothing in this License shall be construed as excluding or limiting any implied
license or other defenses to infringement that may otherwise be available to you
under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot convey a covered work so
as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For
example, if you agree to terms that obligate you to collect a royalty for
further conveying from those to whom you convey the Program, the only way you
could satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

324

The Geneva Library Collection D.1. The GNU Affero General Public License

Notwithstanding any other provision of this License, if you modify the Program,
your modified version must prominently offer all users interacting with it
remotely through a computer network (if your version supports such interaction)
an opportunity to receive the Corresponding Source of your version by providing
access to the Corresponding Source from a network server at no charge, through
some standard or customary means of facilitating copying of software. This
Corresponding Source shall include the Corresponding Source for any work covered
by version 3 of the GNU General Public License that is incorporated pursuant to
the following paragraph.

Notwithstanding any other provision of this License, you have permission to link
or combine any covered work with a work licensed under version 3 of the GNU
General Public License into a single combined work, and to convey the resulting
work. The terms of this License will continue to apply to the part which is the
covered work, but the work with which it is combined will remain governed by
version 3 of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
Affero General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies
that a certain numbered version of the GNU Affero General Public License "or any
later version" applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number
of the GNU Affero General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the
GNU Affero General Public License can be used, that proxy’s public statement of
acceptance of a version permanently authorizes you to choose that version for
the Program.

Later license versions may give you additional or different permissions.
However, no additional obligations are imposed on any author or copyright holder
as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

325

Appendix D. Important Open Source Licenses The Geneva Library Collection

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot
be given local legal effect according to their terms, reviewing courts shall
apply local law that most closely approximates an absolute waiver of all civil
liability in connection with the Program, unless a warranty or assumption of
liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

D.2. The Boost Software License, v 1.0

Some of Geneva’s classes are covered by the Boost Software License (v 1.0). They typically repre-
sent code that has been derived from code available in the Boost library collection. At the time of
writing, you can find the license at http://www.boost.org/users/license.html.
It is quoted verbatim below.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE

326

http://www.boost.org/users/license.html

The Geneva Library Collection D.2. The Boost Software License, v 1.0

FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

327

Appendix E.

Glossary

API stands for Application Programming Interface

A Bit is a binary state, only capable of assuming the value 0 and 1

A Byte are 8 Bits

Bandwidth refers to the amount of data leaving one end of a network per time unit

A Batch Submission System handles the allocation of cluster resources

Cooling Schedule is a measure for the degradation of the “temperature” in the Simulated Annealing
optimization algorithm.

CUDA is a standard for performing general purpose calculations particularly on NVIDIA graphics cards

DirectX is a standard for computer graphics

EGEE stands for Enabling Grids for E-SciencE

EGI stands for the European Grid Infrastructure

In the context of this manual, a Feature Vector describes the properties of an optimization problem.
See also http://en.wikipedia.org/wiki/Feature_vector for other uses.

A Function Object refers to an object of a class that defines an operator().

A Gigabyte are 1024 Megabytes

GPGPU stands for General Purpose Graphics Processing Units

GPU stands for Graphics Processing Unit

Hyperthreading refers to the doubling of registers of a processor which makes it look like having
twice the number of cores

Individual denotes the definition of a parameter set and a numeric evaluation. Sometimes individuals
are also called “candidate solution” in this document.

Invariant Mass is a way of calculating the likely mass of elementary particles from the properties of
two or more “tracks” emanating from its decay point.

JSON is the Java Script Object Notation. It is used in Geneva for configuration files.

A Kilobyte are 1024 Bytes

Latency refers to the amount of time data needs to travel from one end of a connection to another.

LHC stands for the Large Hadron Collider

329

http://en.wikipedia.org/wiki/Feature_vector

Appendix E. Glossary The Geneva Library Collection

A Manipulator is a simple class that modifies the output provided through a stream. In the Geneva
library, this facility is used for logging and raising of exceptions (compare e.g. sections 33.2.2 and
33.2.3).

A Megabyte are 1024 Kilobytes

MPI stands for Message Passing Interface

A Mutex is a type of variable whose value can be switched atomically. It is used for locking in multi-
threaded applications.

OpenCL is a C-based language for performing general-purpose calculations on modern graphics
cards.

OpenGL is a C-based general purpose language for the creation of graphics.

A Petabyte are 1024 Terabytes

POD stands for Plain Old Data

PSO stands for Particle Swarm Optimization criterion, expressed through Geneva’s classes and inter-
faces

In the context of the Geneva library collection, a Quantization Effect refers to the fact that higher
numbers of individuals do not necessarily lead to a speed up. There are “steps” in the speedup graph
as a function of the number of individuals.

The term reentrant refers to functions that can run in parallel to each other in a multithreaded envi-
ronment.

ROOT is the ROOT Object Oriented Toolkit

Serialization allows to transform binary objects into a format such as XML that can be stored on
disk or transferred over a network. The opposite process is called De-Serialization and transforms
serialized data into binary objects.

SIMD means Single Instruction Multiple Data

Evolutionary Algorithms are a representative of Stochastic Optimization

The term Solver stands for the evaluation function used to rate candidate solutions.

A Terabyte are 1024 Gigabytes

A Teraflop is the equivalent of 1012 single precision floating point operations per second

Travelling Salesman refers to a problem where a virtual salesman needs to find the shortest route,
travelling through a number of predefined points, possibly involving constraints.

A Web Service is a means of running or accessing distributed applications over a defined interface.

WLCG stands for the Worldwide LHC Computing Grid

XML stands for Extensible Markup Language

330

Appendix F.

References

Printed Resources

Books

[9] Rdiger Berlich. Visualisierung hadronischer Splitoffs und ihre Erkennung mit neuronalen Net-
zen. Diploma Thesis, Ruhr-Universitochum. German. University of Bochum (Germany), 1995.

[10] Christian Blum and Daniel Merkle. Swarm Intelligence. Introduction and Applications. Heidel-
berg: Springer, 2008. isbn: 978-3-540-74088-9.

[12] Nicholas Carr. The Big Switch. Rewiring the world, from Edison to Google. New York: W. W.
Norton & Company, Inc., 2008. isbn: 978-0-393-06228-1.

[23] Ian Foster and Carl Kesselman, eds. The Grid. Blueprint for a new Computing Infrastructure.
San Francisco: Morgan Kauffmann Publishers, Inc., 1998. isbn: 1-55860-475-8.

[29] Ingrid Gerdes, Frank Klawonn, and Rudolf Kruse. Evolution Algorithmen. German. Wiesbaden:
Vieweg, 2004. isbn: 3-528-05570-7.

[36] John H. Holland. Adaptation in natural and artificial systems. An introductory analysis with
applications to biology, control, and artificial intelligence. MIT Press, 2001. isbn: 0-262-58111-
6.

[43] Bjrn Karlsson. Beyond the C++ Standard Library. Addison-Wesley Professional, 2005. isbn:
978-0321133540.

[44] Bernd Kost. Optimierung mit Evolutionsstrategien. German. Frankfurt am Main: Wissenschaftlicher
Verlag Harri Deutsch, 2003. isbn: 3-8171-1699-3.

[52] Pawel Plaszczak and Richard Wellner Jr. Grid Computing. The savvy manager’s guide. San
Francisco: Morgan Kaufmann Publishers, 2006. isbn: 0-12-742503-9.

[53] Bogdan Povh et al. Teilchen und Kerne. Eine Einfhrung in die physikalischen Konzepte. Ger-
man. Berlin: Springer Verlag, 2001. isbn: 3-540-65928-5.

[63] Ingo Rechenberg. Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. German. Frommann-Holzboog, 1973. isbn: 3-7728-0374-1.

331

Appendix F. References The Geneva Library Collection

[64] Ingo Rechenberg. Evolutionsstrategie ’94. German. Frommann-Holzboog, 1994. isbn: 3-7728-
1642-8.

[71] The Boost C++ Libraries. XML Press, 2011. isbn: 978-0982219195.

[144] Anthony Williams. Concurrency in Action. Practical Multithreading. Manning, 2012.

Articles

[4] Dr. Christian Baun. “Tonangebend. Grid-, Cloud-, Cluster- und Meta-Computing”. German. In:
c’t Magazin fr Computer Technik 21 (2008).

[6] Dr. Rdiger Berlich. “Bewegliche Ziele. Anspruch und Wirklichkeit des Grid Computing”. Ger-
man. In: c’t Magazin fr Computer Technik 21 (2008).

[8] Rdiger Berlich. “Training feedforward neural networks using evolutionary strategies. Proceed-
ings of AIHENP 95”. In: New Computing Techniques in Physics Research IV (1995), 521ff.

[22] George I. Evers and Mounir Ben Ghalia. “Regrouping Particle Swarm Optimization: A New
Global Optimization Algorithm with Improved Performance Consistency Across Benchmarks”.
In: Proceedings of 2009 IEEE International Conference on Systems, Man, and Cybernetics
(2009). url: http://www.georgeevers.org/publications.htm (visited
on 07/05/2011).

[38] Ralph Hlsenbusch. “Hinter den Wolken. Cloud Computing auf altbekannten Wegen”. German.
In: Magazin fr professionelle Informationstechnik 12 (2008).

[41] J.Kennedy and R.C.Eberhart. “Particle Swarm Optimization”. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks IV (1995), pp. 1942–1948.

[66] Bernhard Schott. “Weather forecast: Will it rain Grids and Clouds?” In: Science, Technology
and Innovation Projects (2008). issn: 1758-2369.

[83] “Towards building a cloud for scientific applications”. In: Advances in Engineering Software
42(9) (2011), pp. 714–722.

Online Resources

Articles

[17] Thomas A. DeFanti et al. “Overview of the I-WAY: Wide Area Visual Supercomputing”. In:
Online presence of the Mathematics and Computer Science division at Argonne National Lab
(1995). url: www-unix.mcs.anl.gov/fl/publications/iway-ijsa.
pdf (visited on 11/26/2008).

[24] Ian Foster, Carl Kesselman, and Steven Tuecke. “The Anatomy of the Grid. Enabling Scalable
Virtual Organizations”. In: International Journal of Supercomputing Applications (2001). url:
www.globus.org/alliance/publications/papers/anatomy.pdf
(visited on 11/15/2008).

332

http://www.georgeevers.org/publications.htm
www-unix.mcs.anl.gov/fl/publications/iway-ijsa.pdf
www-unix.mcs.anl.gov/fl/publications/iway-ijsa.pdf
www.globus.org/alliance/publications/papers/anatomy.pdf

The Geneva Library Collection

[25] Ian Foster et al. “The Physiology of the Grid. An Open Grid Services Architecture for Dis-
tributed Systems Integration”. In: Online publication of the Globus alliance (2001). url: http:
//www.globus.org/alliance/publications/papers/ogsa.pdf
(visited on 11/15/2008).

[28] Wolfgang Gentzsch. “Grids are Dead! Or are they?” In: On-Demand Enterprise. Peer Re-
viewed Journal on the Internet (June 2008). url: http://www.gridtoday.com/
grid/2381106.html (visited on 10/04/2008).

[46] Tim Berners Lee. “Information Management: A Proposal”. In: Online presence of the World
Wide Web Consortium (Mar. 1989). url: http://www.w3.org/History/1989/
proposal.html (visited on 11/26/2008).

[47] Barry M. Leiner et al. “A Brief History of the Internet, Part I”. In: Online publication of the Inter-
net Society (May 1997). url: http://www.isoc.org/oti/articles/0597/
leiner.html (visited on 11/26/2008).

[48] Barry M. Leiner et al. “A Brief History of the Internet, Part II”. In: Online publication of the Inter-
net Society (July 1997). url: http://www.isoc.org/oti/articles/0797/
leiner.html (visited on 11/26/2008).

[62] Eric S. Raymond. “The Cathedral and the Bazaar”. In: First Monday. Peer Reviewed Journal on
the Internet (1998). url: http://www.firstmonday.org/issues/issue3_
3/raymond/ (visited on 05/12/2008).

Technical Reports

[7] Rdiger Berlich. “Application of Evolutionary Strategies to Automated Parametric Optimization
Studies in Physics Research”. PhD thesis. Ruhr-Universitochum, 2003.

[16] Charles Darwin. On the origin of species by means of natural selection. Nov. 1859. url: http:
//www.gutenberg.org/ebooks/1228 (visited on 12/29/2010).

[31] Rishab Aiyer Ghosh et al. Study on the Economic impact of open source software on innova-
tion and the competitiveness of the Information and Communication Technologies (ICT) sector
in the EU. UNU-MERIT, the Netherlands et al., Nov. 2006. url: http://ec.europa.
eu/idabc/servlets/Doc?id=27255 (visited on 04/25/2008).

Wikipedia Resources

[30] German Wikipedia entry for the simulated annealing optimization algorithm. German. url:http:
//de.wikipedia.org/wiki/Simulierte_Abk%C3%BChlung (visited on
01/11/2011).

[130] Wikipedia entry for Amdahl’s Law. url:http://en.wikipedia.org/wiki/Amdahls_
Law (visited on 01/10/2011).

333

http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.gridtoday.com/grid/2381106.html
http://www.gridtoday.com/grid/2381106.html
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www.isoc.org/oti/articles/0597/leiner.html
http://www.isoc.org/oti/articles/0597/leiner.html
http://www.isoc.org/oti/articles/0797/leiner.html
http://www.isoc.org/oti/articles/0797/leiner.html
http://www.firstmonday.org/issues/issue3_3/raymond/
http://www.firstmonday.org/issues/issue3_3/raymond/
http://www.gutenberg.org/ebooks/1228
http://www.gutenberg.org/ebooks/1228
http://ec.europa.eu/idabc/servlets/Doc?id=27255
http://ec.europa.eu/idabc/servlets/Doc?id=27255
http://de.wikipedia.org/wiki/Simulierte_Abk%C3%BChlung
http://de.wikipedia.org/wiki/Simulierte_Abk%C3%BChlung
http://en.wikipedia.org/wiki/Amdahls_Law
http://en.wikipedia.org/wiki/Amdahls_Law

Appendix F. References The Geneva Library Collection

[131] Wikipedia entry for "Cloud Computing". url: http://en.wikipedia.org/wiki/
Cloud_Computing (visited on 11/30/2008).

[132] Wikipedia entry for hard disk drives. url: http://en.wikipedia.org/wiki/
Hard_disk (visited on 11/22/2008).

[133] Wikipedia entry for "Infrastructure-as-a-Service" (IaaS). url: http://en.wikipedia.
org/wiki/Infrastructure_as_a_Service (visited on 11/21/2008).

[134] Wikipedia entry for particle swarm optimization. url: http://en.wikipedia.org/
wiki/Particle_Swarm_Optimization (visited on 01/11/2011).

[135] Wikipedia entry for the brute force search. url:http://en.wikipedia.org/wiki/
Brute_force_search (visited on 01/11/2011).

[136] Wikipedia entry for the Gray code. url: http://en.wikipedia.org/wiki/
Gray_code (visited on 01/06/2011).

[137] Wikipedia entry for the PCI bus. url: http://en.wikipedia.org/wiki/PCI_
Local_Bus (visited on 11/22/2008).

[138] Wikipedia entry for the simulated annealing optimization algorithm. url:http://en.wikipedia.
org/wiki/Simulated_annealing (visited on 01/11/2011).

[139] Wikipedia entry listing the bandwidths of different devices. url:http://en.wikipedia.
org/wiki/List_of_device_bandwidths (visited on 11/22/2008).

[140] Wikipedia entry on permissive licenses. url: http://en.wikipedia.org/wiki/
Permissive_license (visited on 06/04/2008).

[141] Wikipedia entry on the Box-Mller transform. url: http://en.wikipedia.org/
wiki/Box-Muller_transform (visited on 01/03/2011).

[142] Wikipedia entry on the performance and characteristics of AMD graphics processing units. url:
http://en.wikipedia.org/wiki/Comparison_of_AMD_graphics_
processing_units (visited on 01/09/2011).

[143] Wikiquote entry for Victor Hugo. url:http://en.wikiquote.org/wiki/Victor_
Hugo (visited on 11/30/2008).

General Web Links

[1] A simulated Higgs event at the CMS detector. url: http://en.wikipedia.org/
wiki/Image:CMS_Higgs-event.jpg (visited on 11/21/2008).

[3] Article in the Cloud Computing Journal listing companies active in Cloud Computing. url:
http://cloudcomputing.sys-con.com/node/665165 (visited on 11/30/2008).

[5] John Maddock Beman Dawes Jens Mauer. Boost Standard Integer Types. url: http://
www.boost.org/doc/libs/1_43_0/libs/integer/doc/html/
boost_integer/cstdint.html (visited on 05/15/2010).

334

http://en.wikipedia.org/wiki/Cloud_Computing
http://en.wikipedia.org/wiki/Cloud_Computing
http://en.wikipedia.org/wiki/Hard_disk
http://en.wikipedia.org/wiki/Hard_disk
http://en.wikipedia.org/wiki/Infrastructure_as_a_Service
http://en.wikipedia.org/wiki/Infrastructure_as_a_Service
http://en.wikipedia.org/wiki/Particle_Swarm_Optimization
http://en.wikipedia.org/wiki/Particle_Swarm_Optimization
http://en.wikipedia.org/wiki/Brute_force_search
http://en.wikipedia.org/wiki/Brute_force_search
http://en.wikipedia.org/wiki/Gray_code
http://en.wikipedia.org/wiki/Gray_code
http://en.wikipedia.org/wiki/PCI_Local_Bus
http://en.wikipedia.org/wiki/PCI_Local_Bus
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/List_of_device_bandwidths
http://en.wikipedia.org/wiki/List_of_device_bandwidths
http://en.wikipedia.org/wiki/Permissive_license
http://en.wikipedia.org/wiki/Permissive_license
http://en.wikipedia.org/wiki/Box-Muller_transform
http://en.wikipedia.org/wiki/Box-Muller_transform
http://en.wikipedia.org/wiki/Comparison_of_AMD_graphics_processing_units
http://en.wikipedia.org/wiki/Comparison_of_AMD_graphics_processing_units
http://en.wikiquote.org/wiki/Victor_Hugo
http://en.wikiquote.org/wiki/Victor_Hugo
http://en.wikipedia.org/wiki/Image:CMS_Higgs-event.jpg
http://en.wikipedia.org/wiki/Image:CMS_Higgs-event.jpg
http://cloudcomputing.sys-con.com/node/665165
http://www.boost.org/doc/libs/1_43_0/libs/integer/doc/html/boost_integer/cstdint.html
http://www.boost.org/doc/libs/1_43_0/libs/integer/doc/html/boost_integer/cstdint.html
http://www.boost.org/doc/libs/1_43_0/libs/integer/doc/html/boost_integer/cstdint.html

The Geneva Library Collection

[11] Boost’s reference-counted smart pointers (version 1.43). url: http://www.boost.
org/doc/libs/1_43_0/libs/smart_ptr/smart_ptr.htm (visited
on 12/05/2010).

[13] CERN’s structure. url: http://public.web.cern.ch/public/en/About/
Structure-en.html (visited on 11/21/2008).

[14] Conclusion of Victor Hugo’s "Histoire dun crime". url: http://fr.wikisource.
org/wiki/Histoire_d%C3%A2%C2%80%C2%99un_crime_-_Conclusion#
X. (visited on 11/30/2008).

[15] CUDA: NVIDIA’s parallel computing architecture for GPUs. url: http://www.nvidia.
co.uk/object/cuda_home_new_uk.html (visited on 11/09/2011).

[18] Description of Google’s "App Engine". url:http://code.google.com/appengine/
docs/whatisgoogleappengine.html (visited on 11/30/2008).

[19] Distance from Hamburg/Germany to Adelaide/Australia. url:http://www.citycomparator.
com/compare/6_adelaide_vs_119_hamburg.html (visited on 11/23/2008).

[20] EGEE’s training efforts. url: http://training.eu-egee.org/index.php?
id=237 (visited on 11/27/2008).

[26] Frequently Asked Questions about the GNU Licenses. url: http://www.gnu.org/
licenses/gpl-faq.html (visited on 01/23/2011).

[27] Jeff Garland. The Boost.DateTime Library. url: http://www.boost.org/doc/
libs/1_47_0/doc/html/date_time.html (visited on 11/05/2011).

[32] Glossary of terms related to Web services. url: http://www.w3.org/TR/ws-
gloss/ (visited on 11/30/2008).

[33] Google Trends. url: http://www.google.de/trends (visited on 11/15/2008).

[34] Google’s application offerings. url: http://www.google.com/apps/intl/en/
business/index.html (visited on 11/23/2008).

[35] Google’s free mail offerings. url: http://mail.google.com (visited on 11/23/2008).

[37] HP’s IT outsourcing offers. url: http://h20219.www2.hp.com/services/
cache/575706-0-0-225-121.html (visited on 11/23/2008).

[39] IBM’s Blue Gene supercomputers. url: http://domino.research.ibm.com/
comm/research_projects.nsf/pages/bluegene.index.html (vis-
ited on 11/21/2008).

[40] IBM’s IT outsourcing and hosting offers. url:http://www-935.ibm.com/services/
us/index.wss/itservice/so/a1000414 (visited on 11/23/2008).

[42] JMol: an open-source Java viewer for chemical structures in 3D. url: http://jmol.
sourceforge.net (visited on 01/23/2011).

[49] Official Website of the Python programming language. url: http://www.python.
org/ (visited on 11/30/2008).

335

http://www.boost.org/doc/libs/1_43_0/libs/smart_ptr/smart_ptr.htm
http://www.boost.org/doc/libs/1_43_0/libs/smart_ptr/smart_ptr.htm
http://public.web.cern.ch/public/en/About/Structure-en.html
http://public.web.cern.ch/public/en/About/Structure-en.html
http://fr.wikisource.org/wiki/Histoire_d%C3%A2%C2%80%C2%99un_crime_-_Conclusion#X.
http://fr.wikisource.org/wiki/Histoire_d%C3%A2%C2%80%C2%99un_crime_-_Conclusion#X.
http://fr.wikisource.org/wiki/Histoire_d%C3%A2%C2%80%C2%99un_crime_-_Conclusion#X.
http://www.nvidia.co.uk/object/cuda_home_new_uk.html
http://www.nvidia.co.uk/object/cuda_home_new_uk.html
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://www.citycomparator.com/compare/6_adelaide_vs_119_hamburg.html
http://www.citycomparator.com/compare/6_adelaide_vs_119_hamburg.html
http://training.eu-egee.org/index.php?id=237
http://training.eu-egee.org/index.php?id=237
http://www.gnu.org/licenses/gpl-faq.html
http://www.gnu.org/licenses/gpl-faq.html
http://www.boost.org/doc/libs/1_47_0/doc/html/date_time.html
http://www.boost.org/doc/libs/1_47_0/doc/html/date_time.html
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/
http://www.google.de/trends
http://www.google.com/apps/intl/en/business/index.html
http://www.google.com/apps/intl/en/business/index.html
http://mail.google.com
http://h20219.www2.hp.com/services/cache/575706-0-0-225-121.html
http://h20219.www2.hp.com/services/cache/575706-0-0-225-121.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/bluegene.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/bluegene.index.html
http://www-935.ibm.com/services/us/index.wss/itservice/so/a1000414
http://www-935.ibm.com/services/us/index.wss/itservice/so/a1000414
http://jmol.sourceforge.net
http://jmol.sourceforge.net
http://www.python.org/
http://www.python.org/

Appendix F. References The Geneva Library Collection

[50] OpenBabel: The Open Source Chemistry Toolbox. url: http://www.openbabel.
org (visited on 01/23/2011).

[51] OpenCL: An open standard for parallel programming of heterogeneous devices. url: http:
//www.khronos.org/opencl/ (visited on 01/09/2011).

[54] Presentation covering the causes of the LHC start-up failure as well as likely times for the
restart. url:http://indico.cern.ch/getFile.py/access?contribId=
92&sessionId=6&resId=1&materialId=slides&confId=22937 (vis-
ited on 11/27/2008).

[55] Press release covering IBMs European Cloud Computing Hub in Dublin. Mar. 19, 2008. url:
http://www-03.ibm.com/press/us/en/pressrelease/23710.
wss (visited on 11/30/2008).

[56] Press release covering re-start of LHC in 2009. url: http://press.web.cern.
ch/press/PressReleases/Releases2008/PR10.08E.html (visited on
11/21/2008).

[57] Press release for IBM’s Blue Cloud. Nov. 15, 2007. url: http://www-03.ibm.com/
press/us/en/pressrelease/22613.wss (visited on 11/30/2008).

[58] Press release on the occasion of the start of the third EGEE project phase. url: http:
//press.eu-egee.org/fileadmin/documents/press_release/
egee_III_press_release_final.pdf (visited on 10/04/2008).

[59] Product offering for streaming Internet TV by the German Telekom. url: https://eki-
pi.t-home.de/pma-integration/entertain-comfort/4520002
(visited on 11/23/2008).

[61] Robert Ramey. The Boost Serialization Library. url: http://www.boost.org/doc/
libs/1_48_0/libs/serialization/doc/index.html (visited on 12/30/2011).

[65] Sam Johnston on the denial of Dell’s cloud computing trademark application. url: http://
samj.net/2008/08/dell-denied-cloud-computing-both.html
(visited on 10/04/2008).

[67] Herb Sutter. A Pragmatic Look at Exception Specifications. url: http://www.gotw.
ca/publications/mill22.htm (visited on 05/15/2010).

[68] The author’s web page. url:http://ruediger.berlich.com (visited on 06/04/2008).

[69] The Boost C++ Libraries. url: http://en.highscore.de/cpp/boost/ (visited
on 10/19/2011).

[70] The Boost C++ Libraries. url: http://en.highscore.de/cpp/boost/index.
html (visited on 12/05/2010).

[72] The Boost library collection. url: http://www.boost.org (visited on 12/05/2010).

[73] The Boost online documentation. url: http://www.boost.org/doc/ (visited on
12/05/2010).

336

http://www.openbabel.org
http://www.openbabel.org
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://indico.cern.ch/getFile.py/access?contribId=92&sessionId=6&resId=1&materialId=slides&confId=22937
http://indico.cern.ch/getFile.py/access?contribId=92&sessionId=6&resId=1&materialId=slides&confId=22937
http://www-03.ibm.com/press/us/en/pressrelease/23710.wss
http://www-03.ibm.com/press/us/en/pressrelease/23710.wss
http://press.web.cern.ch/press/PressReleases/Releases2008/PR10.08E.html
http://press.web.cern.ch/press/PressReleases/Releases2008/PR10.08E.html
http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
http://press.eu-egee.org/fileadmin/documents/press_release/egee_III_press_release_final.pdf
http://press.eu-egee.org/fileadmin/documents/press_release/egee_III_press_release_final.pdf
http://press.eu-egee.org/fileadmin/documents/press_release/egee_III_press_release_final.pdf
https://eki-pi.t-home.de/pma-integration/entertain-comfort/4520002
https://eki-pi.t-home.de/pma-integration/entertain-comfort/4520002
http://www.boost.org/doc/libs/1_48_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_48_0/libs/serialization/doc/index.html
http://samj.net/2008/08/dell-denied-cloud-computing-both.html
http://samj.net/2008/08/dell-denied-cloud-computing-both.html
http://www.gotw.ca/publications/mill22.htm
http://www.gotw.ca/publications/mill22.htm
http://ruediger.berlich.com
http://en.highscore.de/cpp/boost/
http://en.highscore.de/cpp/boost/index.html
http://en.highscore.de/cpp/boost/index.html
http://www.boost.org
http://www.boost.org/doc/

The Geneva Library Collection

[74] The CMS detector. url: http://cms-project-cmsinfo.web.cern.ch/
cms-project-cmsinfo/Detector/index.html (visited on 11/21/2008).

[75] The crypto law survey. url: http://rechten.uvt.nl/koops/cryptolaw/
(visited on 11/27/2008).

[76] The Doxygen source code documentation generator tool. url: http://www.doxygen.
org (visited on 05/15/2010).

[77] The Gilda Grid training testbed. url: https://gilda.ct.infn.it/ (visited on
11/27/2008).

[78] The GRIA Grid middleware. url: http://www.gria.org/ (visited on 11/27/2008).

[79] The LCG realtime monitor of Imperial College London. url: http://gridportal.hep.
ph.ic.ac.uk/rtm/ (visited on 11/26/2008).

[80] The MONARC study. url: http://monarc.web.cern.ch/MONARC/ (visited on
11/21/2008).

[81] The OGSA-DAI middleware. url:http://www.ogsadai.org.uk (visited on 11/23/2008).

[84] Web precense of the Open Grid Forum. url:http://www.ogf.org (visited on 11/15/2008).

[85] Web presence of Amazon. url: http://www.amazon.com/ (visited on 11/27/2008).

[86] Web presence of Amazon’s Cloud Front. url:http://aws.amazon.com/cloudfront/
(visited on 11/30/2008).

[87] Web presence of Amazon’s Elastic Compute Cloud EC2. url: http://aws.amazon.
com/ec2/ (visited on 11/30/2008).

[88] Web presence of Amazon’s Simple Queue Service. url: http://aws.amazon.com/
sqs/ (visited on 11/30/2008).

[89] Web presence of Amazon’s Simple Storage Service S3. url: http://aws.amazon.
com/s3 (visited on 11/30/2008).

[90] Web presence of Dell. url: http://www.dell.com (visited on 11/30/2008).

[91] Web presence of EGEE’s gLite middleware. url: http://glite.web.cern.ch/
glite/ (visited on 11/30/2008).

[92] Web presence of Google. url: http://www.google.com (visited on 11/30/2008).

[93] Web presence of Google’s "App Engine". url: http://appengine.google.com
(visited on 11/30/2008).

[94] Web presence of GridWiseTech. url: http://www.gridwisetech.com/ (visited
on 11/27/2008).

[95] Web presence of GridWork OpenPBS middleware. url: www.openpbs.org/ (visited on
11/27/2008).

[96] Web presence of Hewlett-Packard. url: http://www.hp.com (visited on 11/30/2008).

337

http://cms-project-cmsinfo.web.cern.ch/cms-project-cmsinfo/Detector/index.html
http://cms-project-cmsinfo.web.cern.ch/cms-project-cmsinfo/Detector/index.html
http://rechten.uvt.nl/koops/cryptolaw/
http://www.doxygen.org
http://www.doxygen.org
https://gilda.ct.infn.it/
http://www.gria.org/
http://gridportal.hep.ph.ic.ac.uk/rtm/
http://gridportal.hep.ph.ic.ac.uk/rtm/
http://monarc.web.cern.ch/MONARC/
http://www.ogsadai.org.uk
http://www.ogf.org
http://www.amazon.com/
http://aws.amazon.com/cloudfront/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://aws.amazon.com/s3
http://aws.amazon.com/s3
http://www.dell.com
http://glite.web.cern.ch/glite/
http://glite.web.cern.ch/glite/
http://www.google.com
http://appengine.google.com
http://www.gridwisetech.com/
www.openpbs.org/
http://www.hp.com

Appendix F. References The Geneva Library Collection

[97] Web presence of Hewlett-Packard Labs. url: http://www.hpl.hp.com (visited on
11/30/2008).

[98] Web presence of Hewlett-Packard’s Dynamic Cloud Services. url: http://www.hpl.
hp.com/research/cloud.html (visited on 11/30/2008).

[99] Web presence of IBM. url: http://www.ibm.com (visited on 11/30/2008).

[100] Web presence of Intel. url: http://www.intel.com (visited on 11/30/2008).

[101] Web presence of Karlsruhe Institute of Technology. German. url: http://www.kit.
edu (visited on 09/03/2013).

[102] Web presence of Platform Computing’s LSF middleware. url: http://www.platform.
com/Products/platform-lsf (visited on 11/27/2008).

[103] Web presence of Steinbuch Centre for Computing. German. url:http://scc.kit.edu
(visited on 09/03/2013).

[104] Web presence of the Alien2 Grid middleware. url: http://alien.cern.ch (visited
on 11/27/2008).

[105] Web presence of the Andrew filesystem. url: http://www.openafs.org (visited on
11/23/2008).

[106] Web presence of the Enabling Grids for E-SciencE initiative. url: http://www.eu-
egee.org (visited on 10/04/2008).

[107] Web presence of the Euforia consortium. url: http://www.euforia-project.
eu/EUFORIA (visited on 11/27/2008).

[108] Web presence of the EUGridPMA. url: http://www.eugridpma.org/ (visited on
11/27/2008).

[109] Web presence of the European Data Grid project. url: http://eu-datagrid.web.
cern.ch/eu-datagrid/ (visited on 10/04/2008).

[110] Web presence of the European Grid Infrastructure. url: http://web.egi.eu/ (visited
on 10/12/2011).

[111] Web presence of the Global Grid User Support. url: http://www.ggus.org/ (visited
on 11/27/2008).

[112] Web presence of the Globus Alliance. url: http://www.globus.org/ (visited on
11/23/2008).

[113] Web presence of the Gridipedia project. url: http://www.gridipedia.eu (visited
on 11/27/2008).

[114] Web presence of the GridKa compute centre, including the GermanGrid certificate authority.
German. url: http://grid.fzk.de/ (visited on 11/27/2008).

[115] Web presence of the Helmholtz Association of German Research Centres. url: http://
www.helmholtz.de/en/ (visited on 09/03/2013).

338

http://www.hpl.hp.com
http://www.hpl.hp.com/research/cloud.html
http://www.hpl.hp.com/research/cloud.html
http://www.ibm.com
http://www.intel.com
http://www.kit.edu
http://www.kit.edu
http://www.platform.com/Products/platform-lsf
http://www.platform.com/Products/platform-lsf
http://scc.kit.edu
http://alien.cern.ch
http://www.openafs.org
http://www.eu-egee.org
http://www.eu-egee.org
http://www.euforia-project.eu/EUFORIA
http://www.euforia-project.eu/EUFORIA
http://www.eugridpma.org/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://web.egi.eu/
http://www.ggus.org/
http://www.globus.org/
http://www.gridipedia.eu
http://grid.fzk.de/
http://www.helmholtz.de/en/
http://www.helmholtz.de/en/

The Geneva Library Collection

[116] Web presence of the Infocomm Development Authority in Singapore. url: http://www.
ida.gov.sg (visited on 11/30/2008).

[117] Web presence of the LHC Computing Grid LCG. url: http://lcg.web.cern.ch/
LCG (visited on 11/30/2008).

[118] Web presence of the National E-Science Centre in Edinburgh. url: http://www.nesc.
ac.uk/ (visited on 11/27/2008).

[119] Web presence of the national German Grid initiative D-Grid. url: http://www.d-grid.
org/ (visited on 11/26/2008).

[120] Web presence of the Nordugrid consortium. url: http://www.nordugrid.org/
middleware/ (visited on 11/27/2008).

[121] Web presence of the OpenCirrus Cloud Testbed. url: http://www.cloudtestbed.
org/ (visited on 11/30/2008).

[122] Web presence of the QosCosGrid consortium. url: http://www.qoscosgrid.eu
(visited on 11/27/2008).

[123] Web presence of the Sun Grid Engine. url: http://www.sun.com/software/
gridware/ (visited on 11/27/2008).

[124] Web presence of the UNICORE consortium. url: http://www.unicore.eu/ (visited
on 11/27/2008).

[125] Web presence of the University of Illinois at Urbana Champaign. url: http://illinois.
edu/ (visited on 11/30/2008).

[126] Web presence of Ulteo. url: http://www.ulteo.com/home/en/home (visited
on 11/23/2008).

[127] Web presence of Yahoo. url: http://www.yahoo.com (visited on 11/30/2008).

[128] Welt der Physik / Der LEP-Beschleuniger bei CERN. url:http://www.weltderphysik.
de/de/3515.php (visited on 11/21/2008).

[129] What is the Grid ? A Three Point Checklist. 2002. url: http://www-fp.mcs.anl.
gov/~foster/Articles/WhatIsTheGrid.pdf (visited on 11/26/2008).

[145] Anthony Williams. The Boost.Thread Library. url: http://www.boost.org/doc/
libs/1_43_0/doc/html/thread.html (visited on 01/10/2011).

Presentations

[2] Dr. Torsten Antoni. The EGEE user support infrastructure. Presentation given at the EGEE con-
ference 2008 in Istanbul/Turkey. 2008. url:http://indico.cern.ch/materialDisplay.
py?contribId=339&sessionId=87&materialId=slides&confId=
32220 (visited on 11/30/2008).

339

http://www.ida.gov.sg
http://www.ida.gov.sg
http://lcg.web.cern.ch/LCG
http://lcg.web.cern.ch/LCG
http://www.nesc.ac.uk/
http://www.nesc.ac.uk/
http://www.d-grid.org/
http://www.d-grid.org/
http://www.nordugrid.org/middleware/
http://www.nordugrid.org/middleware/
http://www.cloudtestbed.org/
http://www.cloudtestbed.org/
http://www.qoscosgrid.eu
http://www.sun.com/software/gridware/
http://www.sun.com/software/gridware/
http://www.unicore.eu/
http://illinois.edu/
http://illinois.edu/
http://www.ulteo.com/home/en/home
http://www.yahoo.com
http://www.weltderphysik.de/de/3515.php
http://www.weltderphysik.de/de/3515.php
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www.boost.org/doc/libs/1_43_0/doc/html/thread.html
http://www.boost.org/doc/libs/1_43_0/doc/html/thread.html
http://indico.cern.ch/materialDisplay.py?contribId=339&sessionId=87&materialId=slides&confId=32220
http://indico.cern.ch/materialDisplay.py?contribId=339&sessionId=87&materialId=slides&confId=32220
http://indico.cern.ch/materialDisplay.py?contribId=339&sessionId=87&materialId=slides&confId=32220

[21] Walter Erl. Vermarktungsmodelle von Open Source-Lsungen. German. Presentation from the
Open Source Meets Business conference (not publicly available). MAX21 Management &
Beteiligungen AG. 2008. url: http://www.heise.de/events/2008/open_
source_meets_business/ (visited on 04/30/2008).

[45] Dr. Marcel Kunze. Die Evolution des Rechenzentrums: Die Industrialisierung der IT. German.
2008. url: http://25dvt.bgc-jena.mpg.de/Z/Abstracts/Kunze.
html (visited on 11/30/2008).

[146] Irving Wladawsky-Berger. Cloud Computing, Grids, and the coming IT Cambrian Explosion.
Irving Wladawsky-Berger is Chairman Emeritus of the IBM Academy of Technology. 2008. url:
http://www.ogf.org/OGF22/materials/1137/Irving+Wladawsky-
Berger+Keynote.pdf (visited on 10/06/2008).

http://www.heise.de/events/2008/open_source_meets_business/
http://www.heise.de/events/2008/open_source_meets_business/
http://25dvt.bgc-jena.mpg.de/Z/Abstracts/Kunze.html
http://25dvt.bgc-jena.mpg.de/Z/Abstracts/Kunze.html
http://www.ogf.org/OGF22/materials/1137/Irving+Wladawsky-Berger+Keynote.pdf
http://www.ogf.org/OGF22/materials/1137/Irving+Wladawsky-Berger+Keynote.pdf

List of Figures

2.1. Optimizations often act on a model, whose resemblance to reality may vary. 8
2.2. The EVA library (a predecessor of Geneva) was used in this example to optimize the

selection of “events” coming from a particle physics experiment. A significant reduction
of mis-reconstructed particles is visible (source: own pictures). 9

2.3. Local optima can prevent an optimization algorithm from finding the global optimum . . . 13
2.4. The Pareto Frontier is defined by data points that are not dominated by other solutions . 14
2.5. Boundary condition involving two parameters . 15

4.1. Evolutionary Algorithm populations consist of p >=1 parents and c >=p children 22
4.2. The most common mutation operator in Evolution Strategies adds gaussian-distributed

random numbers to a given floating point parameter. The success of the optimization
procedure crucially depends on the right choice for the width σ of the gaussian. 23

4.3. The Rastrigin function is a common test function for Evolution Strategies. Its major
characteristic is a large number of local optima . 24

4.4. This picture demonstrates how an Evolution Strategy with a single parent searches for
the minimum of the Rastrigin function in two dimensions. The Rastrigin function has
a very large number of local optima (compare figure 4.3). Solely “Gauss” mutation is
being applied to the parameters, and no recombination schemes are being used. 25

4.5. Using two gaussians instead of one for the mutation of floating point parameters in
Evolution Strategies might boost performance, if the current best solution is still far
away from the global optimum. 26

6.1. This picture demonstrates how a PSO algorithm searches for the minimum of the Ras-
trigin function in two dimensions. Note that, in comparison to figure 4.4, the algorithm
needs to search a far bigger area for the optimum, as the allowed value range has been
increased. 41

7.1. Parameter scans on a regular grid, for a simple parabola (left) and a parabola with
overlaid local optima (right). The grid comprises 40 measurements in each direction,
for a total of 1600 measurements. The plots were created with the help of pluggable
optimization monitors (compare section 25.3). 46

8.1. The GridKa compute cluster is a Tier-1 centre in the academic EGI grid, located at
Steinbuch Centre for Computing of Karlsruhe Institute of Technology. At the time of
writing it comprised over 10000 CPU cores. (Picture used with permission from Stein-
buch Centre for Computing) . 50

341

8.2. Batch submission systems assign incoming processing requests from users to the most
suitable resource. Picture courtesy of Martina Hardt (designal • conceptional work by
hardt – www.designal.de) . 51

8.3. Ian Foster gives a presentation at the Sun booth during Supercomputing 2001 in Den-
ver/USA. It is worth noting the slogan “Sun Powers The Grid” (source: own pictures) . . . 52

8.4. Schematic architecture of a global Grid infrastructure. Picture courtesy of Martina Hardt
(designal • conceptional work by hardt – www.designal.de) . 53

8.5. The “speed” of a network consists of two components – latency and bandwidth. Picture
courtesy of Martina Hardt (designal • conceptional work by hardt – www.designal.de) . . 58

8.6. Response times from servers running in different geographic locations show large vari-
ations. Parallel execution in a wide area setting needs to take this into account. 59

8.7. Plot of Amdahl’s law: S= 1
(1−P)+o(N)+ P

N

as a function of N , for a fixed value of o (N)/N

and different values of P . 61

9.1. Semi-transparent triangles can be super-imposed in such a way by optimization algo-
rithms that the amalgamation starts to look like a given target picture. In this example, a
clipping from da Vinci’s Mona Lisa has been used. The algorithm starts with a random
collection of 300 triangles (equivalent to 3000 parameters to be optimized). The target
picture is shown in the lower right-hand corner of this figure. 66

9.2. Mapping a star-like structure using the method described in section 9.1. The target
image is shown in figure 9.3 . 67

9.3. Our experience shows that, in Evolutionary Algorithms, a
�
µ,ν

�
selection scheme of-

ten performs better than a
�
µ+ν

�
scheme. In both selection schemes, most of the

progress during the mapping of the star-like structure is achieved before the first 20%
of the optimization run. 68

9.4. This form of the protein ALA12H was obtained by minimizing the potential energy of
the molecule through variations of the geometry. The picture was created with the
molecular viewer JMol. 70

9.5. A feed-forward neural network calculates the output of a node by applying a sigmoid
function to the weighted sums of the output of preceding nodes (minus a threshold) . . . 72

9.6. Input pattern used to train a 2-2-1 network (an even distribution of input values and a
distribution confined to the x- and y-axis) and the output of the network after the training
in different areas of the canvas (multiplied by 10 and rounded). 73

10.1.Binary packages of the Geneva library are available for some Linux flavours in the ded-
icated download area of the OpenSUSE Build Service: https://software.
opensuse.org/download/package?project=home:garcia&package=
geneva-opt . 78

10.2.In order to download the Geneva library collection, visit https://launchpad.
net/geneva and click on the green download link on the right side of the page 79

11.1.Geneva makes a hard distinction between the specification of optimization problems
(left) and the optimization algorithms (right) trying to provide candidate solutions with
increasingly better evaluation. 88

11.2.Parametric optimization with the Geneva library is done in three distinct phases.Phases
of parametric optimization . 89

11.3.Two views of a two-dimensional paraboloid. Left: contour lines; right: three-dimensional
view with function values. 90

12.1.Geneva’s optimization-related class hierarchy is rooted in the GObject class. The
figure shows the innermost classes only. 102

13.1.User-visible parameter-types (marked red) follow an intuitive naming scheme. 115

13.2.Constraints of floating point values are modelled as a mapping from an internal to a
user-visible value. This allows to apply modifications of the core value to an uncon-
strained range, while presenting a constrained value to the user. 116

13.3.This picture shows the real mapping, as achieved for different constraints using the
method illustrated in figure 13.2. 117

14.1.Adaptors derive from a common base class whose template parameter determines the
types they can be applied to. 134

14.2.This figure shows the internal values of a number of collections of gaussian distributed
random numbers with different mean value, as well the externally visible values. The
blue curve shows the actual distribution, the curve with red stripes shows the “input”
gaussian. It is evident that there is very little distortion close to the outer boundaries of
the allowed value range. 143

15.1.Geneva’s individuals are derived from the GParameterSet class, which features astd::vector<>
interface. The class stores smart pointers to GParameterBase objects, so that it
becomes possible to store different parameter types in the container. 146

15.2.Geneva’s individuals can serve as the root of an entire hierarchy of parameters, us-
ing the GParameterObjectCollection class. It can be likened to an individual without
attached evaluation function and also features a std::vector<> interface 147

16.1.A constraint

x+y <=1

renders part of the parameter space invalid . 156

16.2.Evaluation workflow in the presence of potentially invalid solutions 157

16.3.Valid solutions of a parabola with a “sum-constraint” (left) and an additional “sphere”
constraint (right). The solutions were determined with Genevas parameter scan 158

16.4.Quality surface including invalid in the case of the USESIGMOID policy 162

16.5.The effect that the application of a sigmoid function has on a parabola (plotted in blue) . 164

17.1.Optimization algorithms share common features, such as the definition of halt criteria,
the main optimization cycle or the basic population structure. They can be implemented
in a common base class, called GOptimizationAlgorithmT in Geneva. 168

18.1.Evolutionary Algorithm populations consist of p >=1 parents and c >=p children 174

20.1.A swarm population is segmented into neighborhoods. In each iteration, individuals are
drawn to a different extent towards their respective personal best-, neighborhood best
and globally best solution known so far. 186

21.1.In a gradient-descent population, the individuals representing the current position in
each iteration are followed by collections of individuals representing each of the floating
point parameters. 192

22.1.Parameter scans of the Rastrigin function (compare appendix A.5), on a regular 60x60
grid (left) and with random scan points (right) . 196

26.1.Geneva’s default optimization monitor would only write out the progress of the optimiza-
tion run in ROOT format. The figure shows the progress for a standard 2D parabola, as
output by the optimization monitor discussed in this chapter . 222

27.1.Choosing a good mutation probability can be important for the success of an evolu-
tionary algorithm. In the left side of the picture, a 5% mutation probability was chosen.
Several individuals didn’t get updated at all, for some others only some parameters
were updated, resulting in a sort of line search. On the right side, a 100% mutation
probability was chosen. Except for the mutation probability, all configuration options of
the optimization were identical. 231

28.1.Meta optimization, shown here on the example of a two-dimensional “Noisy Parabola”,
allows to optimize the parameters of optimization algorithms. The figure in the upper
left corner represents the best average number of solver calls in each iteration. The
other plots show the development of some of the variables being optimized. 240

28.2.Same procedure as in figure 28.1, albeit for the 8-dimensional noisy parabola 241

31.1.Floating-point and integer random numbers can be constrained in their value ranges. . . 265

31.2.Two types of gaussian distributions are availble – a standard gaussian with a user-
defined mean and σ, and two gaussians of equal σ superimposed. Both are used as
part of mutation operators in Evolutionary Algorithms (compare chapter 4.2.2). 265

31.3.Boolean random numbers can either be produced with a pre-defined probability distri-
bution for true and false or an even likelihood for both. 266

32.1.Several entities may submit items simultaneously through “buffer ports”, which are
plugged into the broker. The broker will deliver items in a round-robin fashion to one or
more consumers that ask for work items. Consumers might then deliver the work items
to remote sites, or process them locally (depending on the consumer type). Results are
shipped back to the original buffer port, from where they can be retrieved by the producer.274

33.1.A sample plot created with Geneva’s GPlotDesigner class, as demonstrated in
the GPlotDesignerTest example delivered with the Geneva library. 297

A.1. Two views of a two-dimensional paraboloid. Left: contour lines; right: three-dimensional
view with function values. 303

A.2. Two views of the “noisy” parabola in two dimensions. Left: contour lines; right: three-
dimensional view with function values. Note that, due to the very high number of local
optima, the plot program is unable to entirely represent this function, even in the chosen
small value range. 304

A.3. The Rosenbrock function is particularly interesting, as it has a less obvious global opti-
mum at (0.0) in an otherwise flat region. 304

A.4. The Ackley function features a huge number of local optima. In two dimensions, it also
has two global optima. 305

A.5. The Rastrigin function resembles the noisy parabola (compare figure A.2) in that local
optima are overlaid to a parabola, and that the global optimum can be found in (0,0) in
two dimensions. 305

A.6. The Schwefel function has a global optimum at (420.969,420.969) in two dimensions. . 306
A.7. The Schwefel function has a global optimum at (0.0), local optima form concentric rings

around the center. The function resembles the “noisy parabola” in figure A.2. 306

C.1. A picture that was created with the help of an automatically generated ROOT script . . . 312

Index

/etc/ld.so.conf.d/, 85
05_GHapUsagePatterns, 264�
µ+ν

�
, 25�

µ,ν
�

, 25

Accessing Parameters, 148
Ackley Function, 302
ACO, 43
acos_invalid_range<fp_type>, 296
ACTIVEONLY, 149
adapt(T& val), 103
Adaptors, 103, 109, 133
Adding a Custom Optimization Monitor, 221
Adding Candidate Solutions, 171
Adding optimization algorithms to Go2, 208
Affero General Public License, 315
Affero GPL v3, 315
ALICE, 52
ALLOWREEVALUATION, 165
ALLPARAMETERS, 149
Amdahl’s Law, 60
Ant Colony Optimization, 43
asin_invalid_range<fp_type>, 296
ATLAS, 52
Automation of optimization tasks, 7

Bandwidth, 58
bandwidth, 59
batch submission system, 49
Beowulf Cluster, 50
Berlich Noisy Parabola, 301
best accessible solution, 16
best solution, 7
Bi-normal random number distribution, 269

Biological evolution, 21
Bit flip, 30
Boolean Random Numbers, 270
boolean values, 21
Boost, 79, 309
Boost Software License, 326
Boost.Asio, 207
Boost.Thread, 57
Boost.ThreadGroup, 292
boost::shared_ptr<>, 212
BOOST_CLASS_EXPORT, 97
BOOSTROOT, 82
Box-Müller transformation, 28
broker, 273
broker access, 276
broker architecture, 274
broker configuration options, 277
broker work flow, 275
Broker-flooding, 232
Brokered Execution, 200
Brokering, 107
Brute Force, 11
Buffer Ports, 274
Build Environment, 77
building, 82
BUILDMODE, 83
BUILDTESTCODE, 83

C. Eberhart, 39
Candidate Solutions, 89
candidate solutions, 11, 22
Caveats and Restrictions, 229
CERN, 52
cGlobal, 188

347

Charles Darwin, 21
Checkpointing, 172
children, 23
Christian Blum, 42
Class Hierarchy, 101
Class Layout, 167
clone_(), 94
Cloud Computing, 54
Clouds, 47
cluster of clusters, 53
Clusters, 47
CMS, 52
cNeighborhood, 188
Collaborative methods, 39
collaborative methods, 13
Combination of halt criteria, 27
combinatorial problems, 33
combining multiple evaluation criteria, 14
Combining optimization algorithms, 32
combustion, 10
Common library, 281
Common Traits of Optimization Algorithms, 167
Compilation, 78
complex models, 8
compute nodes, 50
Configuration Parameters, 238
Conjugate Gradient, 19
Constraint Handling, 155
constraints, 16
Construction of Evolutionary Algorithm Objects,

174
Construction of Gradient Descent Objects, 192
Construction of Parameter Scan Objects, 195
Construction of PSO Objects, 186
Consumer, 98
continuous parameter value ranges, 12
conversion_iterator, 96, 149
cooling schedule, 33
cooling schemes, 35
Coordinated Resource Sharing, 55
Courtier Library, 107, 273
cPersonal, 188
Creating a Factory, 218

Creating Factories, 290
cross-over, 28
cstdint, 110
CUDA, 57
Custom optimization monitors, 106
cycleInformation(), 212, 213
cycleLogic(), 105

De-activation of Parameters, 114
Debian package, 85
DEFAULTDUPLICATIONSCHEME, 179
Defining the fitness calculation, 104
Definition of Parametric Optimization, 16
difference quotient, 18
differentiable, 10, 18
differential quotient, 18
digital model of reality, 8
Direct access to parameter objects, 150
dirty flag, 161
discontinuities, 10
discrete parameters, 13
distributed system, 58
division_by_0, 296
doInfo(), 169, 211
double, 109
Double gaussian, 30
down-hill, 17
duplication, 21
Duplication Schemes, 178
Dynamic Population Growth, 177

Eclipse, 82
EDG, 53
EGEE, 53
EGI, 53
embarrassingly parallel, 47
Enabling Grids for E-SciencE, 53
European Data Grid, 53
European Grid Infrastructure, 53
Evaluation and Selection, 179
Evaluation Criteria, 88
evolution cycle, 28
Evolution Strategies, 27

Evolution Strategies , 21
Evolutionary Algorithms, 21, 173
EXECMODE_BROKERAGE, 199
EXECMODE_MULTITHREADED, 199
EXECMODE_SERIAL, 199
EXPECTFULLRETURN, 277
extreme values of the quality surface, 12

Fault Tolerance, 62, 275
feature vector, 10
figure of merit, 18
finite variations, 19
firstInformation(), 213
firstInformation(), 212
fitness, 22, 165
fitness(), 96, 103
fitnessCalculation(), 95, 104, 148, 217
Floating Point Accuracy, 229
full definition of an optimization problem, 145

GAdaptorT, 103
Gauss Mutation, 28, 30
gaussian distributed random numbers, 28
GBaseParChildT, 173, 183
GBaseParChildT<T>, 183
GBasePS::setScanRandomly(bool), 197
GBooleanAdaptor, 141
GBooleanCollection, 129
GBooleanObject, 94, 127
GBooleanObjectCollection, 128
GBoundedBufferT, 281
GBoundedBufferWithIdT, 281
GBrokerConnector2T, 273, 277
GBrokerEA, 106
GConsoleLogger, 285
GConstrainedDoubleCollection, 92
GConstrainedDoubleCollection, 122
GConstrainedDoubleObject, 92, 110, 116, 119,

122
GConstrainedDoubleObjectCollection, 119
GConstrainedInt32Object, 93, 94, 123
GConstrainedInt32ObjectCollection, 125
GDoubleBiGaussAdaptor, 136

GDoubleCollection, 93, 112, 121
GDoubleGaussAdaptor, 135
GDoubleObject, 111, 114
GDoubleObjectCollection, 93, 113, 118
Gem::Courtier::submissionReturnMode, 277
Gem::Courtier::GBC_PROCESSED, 278
Gem::Courtier::GBC_UNPROCESSED, 278
Gem::Geneva::ADDINVALID, 158
Gem::Geneva::MULTIPLYINVALID, 158
gemfony_error_condition, 283, 296
gene pool, 21
Genetic Algorithms, 12, 21
GENEVA-EXCEPTION.log, 285
GENEVA-TERMINATION.log, 285
geneva.conf, 85
GENEVA_CONFIG_BASENAME, 289
genevaConfig.gcfg, 82
GEvolutionaryAlgorithmFactory, 173, 174
GEXCEPTION, 285
GFactoryT<>, 290
GFMinIndividual, 215
GFormulaParserT<fp_type>, 295
GFunctionIndividual, 207, 290
GFunctionIndividualFactory, 208
GFunctionMinimizer, 215
GGlobalOptionsT<>, 291
GGradientDescentFactory, 192
Gigabit Ethernet, 49
GInt32Collection, 126
GInt32FlipAdaptor, 140
GInt32GaussAdaptor, 138
GInt32Object, 123
GInt32ObjectCollection, 124
Global optima, 12
Global Options, 291
Globally best individual, 40
glogger, 284
GLOGGING, 285
GMultiThreadedEA, 106
GMultiThreadedGD, 106
GMultiThreadedSwarm, 106
Go2, 98, 173, 183, 215
Go2 client and server mode, 206

GObject, 101, 102, 208
GOptimizableEntity, 96, 103
GOptimizationAlgorithmT, 105, 167, 173, 185,

199
GOptimizationAlgorithmT<>, 211
GOptimizationMonitorT, 106, 211
GOptimizationMonitorT<>, 211
GParaboloid2D, 215
GParaboloidIndividual2D, 91, 98
GParameterBase, 102, 113
GParameterBase::adaptionsActive(), 114
GParameterBase::setAdaptionsActive(), 114
GParameterBase::setAdaptionsInactive(), 114
GParameterObjectCollection, 110, 113, 130
GParameterSet, 91, 104, 145
GParameterT, 111
GParserBuilder, 215, 286
GPersonalityTraits, 105
GPGPU, 47, 57
GPreEvaluationValidityCheckT<ind_type>::setAllowNegative(),

158
Gradient Descent, 12
Gradient Descent Configuration Options, 194
Gradient Descents, 17
Gradient descents, 18
Gradient Methods with Geneva, 191
GRandom, 136, 264
GRandom::uniform_01<double>(), 265
GRandom::uniform_real(const double&), 266
GRandomT.hpp, 264
Gray Code, 31
GridKa, 49
Grids, 47
GRIDtoday, 55
GSerialEA, 106
GSimulatedAnnealingFactory, 183
GSTDERR, 286
GSTDOUT, 286
GStdPtrVectorInterface, 150
GStdSimpleVectorInterface, 112
GSubmissionContainerT, 276
GTERMINATE, 285
GThreadGroup, 292

GThreadPool, 292
GWARNING, 285

Halt Criteria, 26, 170
Hans-Paul Schwefel, 21
Hap library, 263
High multiplicity, 11
histogram, 10
Hybrid feature vectors, 31
hybrid selection scheme, 26

Ian Foster, 52
ideal solution, 16
INACTIVEONLY, 149
INCOMPLETERETURN, 277
Individuals, 88, 103, 145
Infiniband, 49
infinitesimal step, 18
INFOEND, 169, 212
INFOINIT, 169, 212
INFOPROCESSING, 169, 212
informationFunction(), 212
Ingo Rechenberg, 21
Initialization, 22
innermost classes, 101
Installation from source, 81
Installation using packages, 80
INSTALLDIR, 82
Integer random numbers, 270
Internal Architecture of Optimization Monitors,

211
invalidity, 161

J. Kennedy, 39
Jeff Garland, 281
John Holland, 21
JSON, 286

Large Data Sets, 153
Large Hadron Collider, 52
lastInformation(), 213
lastInformation(), 212
Latency, 58
latency, 59

Launchpad, 81
LCG, 52
LD_LIBRARY_PATH, 85
LHC, 52
LHCb, 52
libgeneva, 101
libhap, 108
Linux, 50
Loading Static Data at a Remote Site, 201
Local optima, 12
log10_negative_value<fp_type>, 296
log_negative_value<fp_type>, 296
Logging, 283
long double, 109
loosely coupled, 47
LSF, 49

Main Loop, 169
main(), 90, 205, 215
make, 83
math_logic_error, 296
maximum number of iterations, 26
Merkle, 42
Message Passing Interface, 51
Mixing Parameter Types, 181
Models and Reality, 8
Mona Lisa, 65
MPI, 51, 275
MPI-Consumer, 278
MUCOMMANU_PARETO, 181
MUCOMMANU_SINGLEEVAL, 180
Multi-Criterion Optimization, 13
Multi-Populations, 237
Multicriterion optimization, 150
Multipopulations, 32
Multithreaded Execution, 200
Multithreading, 56
MUNU1PRETAIN_SINGLEEVAL, 180
MUPLUSNU_PARETO, 181
MUPLUSNU_SINGLEEVAL, 179
Mutation, 179
mutation, 21
Mutation Probability, 230

Mutex, 282

Nature as a Role Model, 33
neighborhood, 39
neighborhood-best, 40
networked client, 207
new global evaluation criterion, 14
nicely parallel type, 47
noisy quality surface, 28
non-differentiable functions, 18

Object, 93, 111
OpenCL, 57, 109
OpenSUSE Build Service, 81
optimization, 7
Optimization Algorithm Classes, 105
optimization algorithms, 87
Optimization Monitor, 211
Optimization Monitors: Specifics for the Algo-

rithms, 213
optimum, 7
out of source builds, 81
Overhead of gradient descents, 20
overview, 77

Parabola, 301
paraboloid, 84
Parallelization Modes, 199
Parameter Scans, 45
Parameter Scans with Geneva, 195
Parameter Sets, 104
Parameter Specification, 90
Parameter Types, 109
parents, 22
pareto condition, 15
pareto optimization, 15
Parsing Configuration Files, 286
Particle Swarm Optimization, 12
Particle Swarm Optimization with Geneva, 185
Peforming the actual Optimization, 208
personal best, 40
Personalities, 154
Personality Traits, 104
Phases of parametric optimization, 89

pheromone trail, 43
ping, 59
Pluggable Optimization Monitor, 106
Pluggable optimization monitors, 213
pops, 282
population, 105
Population Layout, 192
prepareBuild.sh, 82
probability, 33
problem definitions, 87
Problem description, 90
Prof. Wolfgang Gentzsch, 55
Protein Folding, 70
PSO, 39
push_back(), 93, 171, 174
pushs, 282

quality, 90
quality surface, 12
quality-based halt-criterion, 27
Quantization Effects, 63

raiseException(), 283
Raising Exceptions, 283
Ramachandran, 156
Random normal distribution, 267
Random Number Creation, 107
Random Number Factory, 263
Random numbers in Geneva, 263
RANDOMDUPLICATIONSCHEME, 178
Rastrigin function, 28, 302
Reality, 8
recombination, 21
Recombination Schemes, 27
RESUBMISSIONAFTERTIMEOUT, 277
right balance, 9
robustness, 20
ROOT, 90, 211, 311
Rosenbrock Function, 302
roundtrip-time, 59
RPM, 85

Salomon Function, 303
saSelect(T, iteration), 36

Schwefel Function, 302
scientific analysis, 11
Security, 63
selection, 21
self adjusting, 20
self-adaption, 29
Serial Execution, 199
Serialization, 80, 90, 151, 309
serialize(), 97
setCGlobal(double), 188
setCNeighborhood(double), 188
setCPersonal(double), 188
setCVelocity(double), 188
setFiniteStep(float fs), 194
setNStartingPoints(std::size_t np), 194
setReportIteration(), 170
setStepSize(float sz), 194
Setting up an individual, 215
setValue(), 93, 111
shared_ptr, 80
Simulated Annealing, 26, 33, 183
simulation, 8
Singletons, 291
Smart Pointers, 309
sorting the population, 24
Speedup, 60
sqrt_negative_value<fp_type>, 296
stall counter based halt criterion, 27
Static nature of Grids, 54
Steepest Descent, 191
steepest descent, 17
Steinbuch Centre for Computing, 49
Streaming, 48
streamline(), 96, 148
streamline(std::vector<par_type>& parVec), 104
Supercomputing, 54
Swarm Intelligence, 39
SWARM_UPDATERULE_CLASSIC, 189
SWARM_UPDATERULE_LINEAR, 189

target directory, 85
temperature, 33
The Go2 class, 205

The Origin of Species, 21
The Population Interface, 171
Thread Group, 292
Thread Pool, 292
Thread-Safe Queue, 281
Threads, 310
Tier-1 centre, 51
Tightly coupled, 47
timeout, 282
Training Feed Forward Neural Networks, 71

Uniform double random numbers, 265
USESIGMOID, 162, 163
USEWORSTCASEFORINVALUD, 162
USEWORSTKNOWNVALIDFORINVALID, 162,

163
Using a Factory Class, 174

validity level, 158
valley floor, 20
Value Ranges, 231
VALUEDUPLICATIONSCHEME, 178
VERBOSEMAKEFILE, 83

WLCG, 51
work items, 276
workOn, 278
Worldwide LHC Computing Grid, 51

Xiadong Li, 42

	Introduction
	Roadmap
	Functionality
	Scalability
	Architecture
	Platform
	Licensing
	Contact

	Optimization Algorithms and Theory
	General Considerations and Overview
	Models and Reality
	Choosing evaluation criteria
	A Single Evaluation Criterion
	Relying on quality surfaces
	Multi-Criterion Optimization
	Parameter Constraints
	Definition

	Gradient Descents
	Mathematical Background
	Application to Real-Life Problems
	Inquest

	Evolutionary Algorithms
	Common Features
	Evolution Strategies
	Genetic Algorithms
	Hybrid Feature Vectors
	Multipopulations
	Inquest

	Simulated Annealing
	Nature as a Role Model
	The Algorithm in Pseudo-Code
	Means of Integration with Evolutionary Algorithms
	Inquest

	Swarm Intelligence
	Particle Swarm Optimization
	Ant Colony Optimization
	Inquest

	Parameter Scans
	Parallelization: General Considerations
	Application Types
	Data- and Task-based Parallelism
	Parallelizing Optimization Algorithms
	Characteristics of Parallel and Distributed Environments
	Constraints

	More Complex Demos and Use Cases
	Mapping Semi-Transparent Triangles to a Target Picture
	Protein Folding
	Training Feed Forward Neural Networks

	Using the Geneva Optimization Library
	Compilation and Installation
	Prerequisites
	Installation using binary packages
	Installation from source

	Defining a first Optimization Problem
	Outline
	Defining a paraboloid
	Class Declaration
	Member functions
	The main() function
	A note about performance
	What we didn't say …

	Class Hierarchies and Principles
	Core Optimization Classes
	Communication and Brokerage
	Random Number Creation

	Parameter Types
	Overview
	Value Access
	Access to Value- and Initialization-Boundaries
	De-activation of Parameters
	Summary of Parameter Types

	Adaptors
	General adaptor options
	GDoubleGaussAdaptor
	GDoubleBiGaussAdaptor
	GInt32GaussAdaptor
	GInt32FlipAdaptor
	GBooleanAdaptor
	Adaptors and Constrained Parameter Types

	Individuals and Parameters
	General Principles
	fitnessCalculation(): Evaluating Individuals
	Serialization
	Further Interface Functions
	Personalities

	Advanced Constraint Handling
	Visualization
	Problem Definition
	Identifying invalid candidate solutions with Geneva
	Transparent solution handling
	Constrained optimization with the USESIGMOID policy
	Other ways of identifying invalid solutions
	Accessing ``true'' and ``transformed'' fitness values

	Common Traits of Optimization Algorithms
	Class Layout
	The Optimization Loop
	Geneva's Halt Criteria
	The Population Interface
	Checkpointing

	Evolutionary Algorithms with Geneva
	Looking Back at the Theory
	Construction of Evolutionary Algorithm Objects
	Specifying the Amount of Parents and Children
	Duplication Schemes
	Mutation
	Evaluation and Selection
	Mixing Parameter Types

	Simulated Annealing with Geneva
	Particle Swarm Optimization with Geneva
	Looking Back at the Theory
	Construction of PSO Objects
	Neighborhood-Sizes and Numbers of Neighborhoods
	Setting Progress Factors
	Constraints for Position Updates
	The Update Rule

	Gradient Methods with Geneva
	Geneva's Steepest Descent Implementation
	Construction of Gradient Descent Objects
	Important Configuration Options

	Parameter Scans with Geneva
	Construction of Parameter Scan Objects
	Random scan versus scan on a grid
	Specifying which parameters to scan

	Parallelization Modes
	Serial Execution
	Multithreaded Execution
	Brokered Execution
	Direct Instantiation of Algorithms

	Unified Access to Optimization Algorithms
	The main() function
	Adding further Algorithms

	Optimization Monitors
	Internal Architecture
	Specifics for the Algorithms
	Pluggable Optimization Monitors

	A More Complex Example
	Setting Up the Individual
	Creating a Factory
	Adding a Custom Optimization Monitor
	Setting up main()

	Caveats and Restrictions
	Floating Point Accuracy
	Gradient Descent and Varying Parameter Value Ranges
	``Silent changes'' to parameter values
	Individuals with a Variable Architecture
	The Effect of the Mutation Probability
	Value Range of Constrained Paramters
	Broker-flooding
	Assigning the worst possible evaluation
	Secure communication

	Details and Advanced Topics
	Performing Meta-Optimization with Geneva
	Multi-Populations
	Optimizing Configuration Parameters
	Letting different Algorithms Compete

	Coding Conventions
	Code Documentation
	Coding Rules
	File naming schemes

	Helping Each other
	Finding Help
	Suggesting Improvements
	Monetary donations
	Licensing

	Independent Geneva Libraries
	Creating Random Numbers with Hap
	The Random Number Factory
	The Random Number Proxy GRandom

	Brokering with the Courtier Library
	Architecture
	Requirements for Work Items
	Accessing the Broker
	Configuration Options of the Broker
	Submission of Work Items

	Common Functionality and Classes
	A Thread-Safe Queue
	Raising Exceptions and Logging
	Parsing Configuration Files
	Creating Factories
	Singletons
	Global Options
	A Thread Group
	A Thread Pool
	The Plot Designer
	Parsing Formulas

	Appendix and Bibliography
	Frequently Used Test Functions
	Parabola
	Berlich Noisy Parabola
	Rosenbrock Function
	Ackley Function
	Rastrigin Function
	Schwefel Function
	Salomon Function

	The Boost Library Collection
	Smart Pointers
	Serialization
	Threads

	The ROOT Analysis Framework
	Important Open Source Licenses
	The GNU Affero General Public License
	The Boost Software License, v 1.0

	Glossary
	References
	Index

